Hyperbaric Treatment Of Brain Radiation Necrosis


Article Author:
Jerome Buboltz


Article Editor:
Prasanna Tadi


Editors In Chief:
Heather Murphy-Lavoie
Jeffrey Cooper
Stephen Hendriksen


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
6/4/2019 8:22:57 PM

Introduction

Soft-tissue radionecrosis of the brain generally occurs in the area of the brain where the tumor was radiated. The resulting brain tissue necrosis can occur as early as 6 months after the radiation treatment. The brain tissue necrosis is a delayed effect of radiation therapy and can occur several years after the radiation treatment, but it usually occurs within the first 1 to 2 years.[1]

Etiology

The risk of developing delayed effects of radiation therapy with resulting brain tissue necrosis is dependent upon many factors including the dose of radiation given, the form of the radiation, the area and amount of brain tissue irradiated, genetic host factors, and use of chemotherapy or radiation sensitizing medications. [2] Radiation necrosis is usually confined to the area where the tumor originally occurred in the brain but can also involve any structure in the brain that was in the original field of radiation therapy. Whole brain radiation places the patient at higher risk than if only a small section of the brain was included in the radiation field. The majority of patients who receive radiation therapy do not develop radiation necrosis, but a significant number of patients may develop this serious complication, and in various studies, the range of risk can be as small as 5% to as high as about 37% of the patients.[3]

Pathophysiology

Radiation therapy induced syndromes are time-dependent and can be divided into acute encephalopathy which occurs within 1 month after therapy and early delayed complications which occur between 1 to 4 months after therapy. The acute phase results in cerebral edema; damage to DNA; damage to vascular structures, especially the smaller arterioles; and damage to progenitor cells, especially oligodendrocytes which lead to demyelination. Endothelial cells are especially prone to damage from radiation therapy. The acute vasogenic edema that develops from radiation therapy is a reversible problem. Also, early delayed damage can be due to neural progenitor cells in the temporal lobe which may be the mechanism that leads to memory problems. [4] The cerebral edema in some of the patients may cause problems with somnolence, headaches, and seizures. Many of these acute and early delayed effects of radiation therapy can reverse on their own or with steroid therapy, but the more delayed effects of radiation therapy, which occur after 6 months, can lead to radiation necrosis which is irreversible and very difficult to treat. 

Pathologically, radiation necrosis primarily affects the smaller arterioles and arteries which initially causes coagulative necrosis and then endothelial thickening and infiltration of lymphocytes and macrophages. The inflammation that develops from the infiltration of these immune cells triggers off a whole host of cytokine activity, activation of fibroblasts, and hyalinization of the tissue.  Immune-mediated mechanisms that contribute to neurotoxicity have been hypothesized but have not been fully explained.

The vascular injury stimulates the formation of new microvessels mediated in part through vascular epidermal growth factor (VEGF), a key player in this mechanism. The disorganized vascular growth can lead to telangiectasia formations which are prone to bleeding and thrombotic events which can lead to further tissue necrosis. Recent studies using bevacizumab and MRI imaging showed decreased vascular permeability, but, although promising, the efficacy and longer-term risk versus the benefit of this therapy remains to be determined.

History and Physical

The symptoms of radiation necrosis are varied depending upon the area of the brain involved, but common symptoms include headache, drowsiness, memory loss (especially if the temporal lobe is involved), personality changes, and seizures.  Whole brain radiation therapy, as is commonly done for treating lymphoma, can result in a diffuse encephalopathy.

Evaluation

The problem with diagnosing radiation necrosis of the brain is that it is difficult to distinguish tumor recurrence versus radiation necrosis. This distinction is especially difficult with glioblastoma multiforme which often may have a palisading pattern of necrosis. Brain MRI perfusion scanning can be helpful in differentiating because in radiation necrosis there is often a lack of T2 flair usually involving the white matter but is commonly present with tumors. MR spectroscopy typically shows low choline and creatine and NAA in radiation necrosis. FDG-PET scanning typically shows lower activity in radiation necrosis, while recurrent tumors typically have increased metabolic activity. Conventional imaging can be misleading and ultimately surgical biopsy may be necessary to distinguish whether the lesion is from radiation necrosis or recurrence of cancer.[5]

Treatment / Management

The approach to the treatment of patients with radiation necrosis should be divided into patients who are asymptomatic and symptomatic. In the asymptomatic patients, it would be reasonable to do serial MRI scans to follow the area of suspected necrosis and see if it further evolves or consider the possibility of tumor recurrence. Lesion biopsy ultimately may be necessary to determine whether it is radiation necrosis versus tumor recurrence, especially if the lesion continues to grow. It is very important to establish the diagnosis of radiation necrosis versus tumor recurrence so that the appropriate therapy may be rendered to the patient. If the patient is having neurologic symptoms or increased intracranial pressure, then surgical options, steroids, anticoagulation therapy, and even hyperbaric oxygen therapy will need to be considered. A novel treatment for radiation necrosis using bevacizumab has been studied with just class one evidence available for its efficacy but is not yet considered standard therapy.[6]

Hyperbaric oxygen therapy (HBO2) has no double-blind placebo-controlled trials to prove its efficacy, but many case studies and prospective studies demonstrate some benefit. HBO2 promotes tissue healing by improved angiogenesis that results in better tissue perfusion. Hyperbaric oxygen therapy also can reduce tissue edema and enhance collagen synthesis by fibroblasts which activity is crucial for the healing of damaged tissue. Radiation necrosis is in part caused by a coagulative and ischemic process which leads to cellular death; this is, in essence, an ischemia-reperfusion injury phenomenon. HBO2 helps to restore normal cellular functions to aid the repair of the ischemic damaged tissue. It is important to note that the angiogenesis that occurs with hyperbaric oxygen therapy produces a vascular supply to the radiation damage tissue that is more robust than the telangiectasia that sometimes occurs as a part of the radiation necrosis.[7][8]

HBO2 usually is delivered at a dose of 2 to 2.4 atmospheres absolute for 90 to 120 minutes daily and may take 20 to 30 treatments before significant angiogenesis occurs with the improvement of the neurologic symptoms. The major disadvantage of hyperbaric oxygen therapy is that it is expensive, time-consuming, and universally not readily available, although this later problem is becoming less of a concern as more facilities are built. More studies on the use of hyperbaric oxygen therapy alone and in conjunction with other therapies, such as concomitant steroid and surgery, are needed to determine the best treatment practices.[9] An interesting study using bevacizumab (which inhibits VEGF) and HBO2 (which enhances VEGF) in combination would be interesting to do. [10] This would be helpful to elucidate some of the other mechanisms by which the HBO2 is working.

Pearls and Other Issues

HBO2 does have undesirable side effects which include enhancement of cataracts; ear barotrauma; pneumothorax formation with pressure changes during the treatment, which can become life-threatening; hypoglycemia in diabetic patients, especially if taking insulin and/or oral hypoglycemic agents; and oxygen associated seizures. Because the patient is being treated in an environment with 100% oxygen under pressure, there is always the risk of fire and failure of the chamber. The risk of the hyperbaric oxygen treatment is relatively low, and the benefit of the therapy generally outweighs the risk. It is important that safety precautions are followed and strongly recommended that the facility considered for treatment have appropriate certification.

Enhancing Healthcare Team Outcomes

The diagnosis and management of radiation-induced brain necrosis is complex and best done with a multidisciplinary team including neurology nurses. There is no optimal treatment for this pathology and recently HBO has been advocated. However, there are no good randomized trials on the use of HBO for radiation-induced brain necrosis. Some reports indicate positive results but the recovery is prolonged. One should not forget that HBO therapy is not benign and is also associated with a number of complications that may adversely affect outcomes.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hyperbaric Treatment Of Brain Radiation Necrosis - Questions

Take a quiz of the questions on this article.

Take Quiz
Which is not a treatment option for radiation necrosis of the brain?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
How can hyperbaric oxygen therapy be beneficial in treating radiation necrosis of the brain?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 10-year-old boy with a history of a medulloblastoma resection followed by radiation therapy develops left sided weakness and difficulty speaking and is diagnosed with radiation necrosis of the brain. Along with systemic corticosteroids, he is referred for hyperbaric oxygen therapy. Which would be the most appropriate treatment protocol?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 60-year-old woman had cerebral lymphoma treated with chemotherapy and whole brain radiation. Approximately 6 months after treatment she develops cognitive decline and gait disturbance. Repeat MRI is consistent with radiation necrosis, and she is referred for hyperbaric oxygen (HBO2) therapy. Which is the least likely effect of HBO2 in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 44-year-old male patient with a prior history of glioblastoma multiforme treated with surgical excision and radiation therapy, present to your office with symptoms memory loss, headaches and drowsiness and periods of blank staring. During these periods the patient is not responsive and will usually last for 2 to 3 minutes. Symptoms started about six months after completion of the radiation therapy. Someone does an MRI scan of the brain which shows an area of a defect in the right temporal lobe with a palisading pattern of necrosis, but there is a lack of T2 flair involving the surrounding white matter. What would be reasonable options for further diagnosis of this patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hyperbaric Treatment Of Brain Radiation Necrosis - References

References

Winter SF,Loebel F,Loeffler J,Batchelor TT,Martinez-Lage M,Vajkoczy P,Dietrich J, Treatment-Induced Brain Tissue Necrosis: A Clinical Challenge in Neuro-Oncology. Neuro-oncology. 2019 Mar 4;     [PubMed]
Furuse M,Nonoguchi N,Yamada K,Shiga T,Combes JD,Ikeda N,Kawabata S,Kuroiwa T,Miyatake SI, Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiation oncology (London, England). 2019 Feb 6;     [PubMed]
Zikou A,Sioka C,Alexiou GA,Fotopoulos A,Voulgaris S,Argyropoulou MI, Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast media     [PubMed]
Chen J,Dassarath M,Yin Z,Liu H,Yang K,Wu G, Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiation oncology (London, England). 2011 Sep 30;     [PubMed]
Mehta S,Shah A,Jung H, Diagnosis and treatment options for sequelae following radiation treatment of brain tumors. Clinical neurology and neurosurgery. 2017 Dec;     [PubMed]
Arslan HH,Satar B,Serdar MA,Ozler M,Yilmaz E, Effects of hyperbaric oxygen and dexamethasone on proinflammatory cytokines of rat cochlea in noise-induced hearing loss. Otology     [PubMed]
Mathieu D,Marroni A,Kot J, Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving and hyperbaric medicine. 2017 Mar;     [PubMed]
Aghajan Y,Grover I,Gorsi H,Tumblin M,Crawford JR, Use of hyperbaric oxygen therapy in pediatric neuro-oncology: a single institutional experience. Journal of neuro-oncology. 2019 Jan;     [PubMed]
Helms A,Evans AW,Chu J,Sahgal A,Ostrowski R,Sosiak T,Wolf G,Gillett J,Whelan H, Hyperbaric oxygen for neurologic indications--action plan for multicenter trials in: stroke, traumatic brain injury, radiation encephalopathy     [PubMed]
Gronier S,Bourg V,Frenay M,Cohen M,Mondot L,Thomas P,Lebrun C, [Bevacizumab for the treatment of cerebral radionecrosis]. Revue neurologique. 2011 Apr;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Undersea and Hyperbaric. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Undersea and Hyperbaric, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Undersea and Hyperbaric, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Undersea and Hyperbaric. When it is time for the Undersea and Hyperbaric board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Undersea and Hyperbaric.