Physiology, Jugular Venous Pulsation


Article Author:
Saranyan Senthelal


Article Editor:
Manish Maingi


Editors In Chief:
Yvonne Carter
Jason Wallen


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
1/17/2019 8:24:52 AM

Introduction

Running along the sternocleidomastoid muscle, the internal jugular vein (IJV) provides deoxygenated blood directly to the right atrium (RA). Although there is a functional valve bordering the superior vena cava (SVC) and RA, this valve does not appear to hinder the phasic flow of blood to the RA. Therefore, the pulsations that can be observed at the level of the IJV can provide valuable insight into the hemodynamics of blood at the level of the RA.[1] The importance of the relationship between the IJV and RA provides healthcare professionals with an invaluable physical examination tool. The bedside examination of the jugular venous pulse (JVP) can be used to determine the central venous pressure (CVP), venous pulse contour, and many cardiac pathologies.[2]

Issues of Concern

The examination of the JVP is a frequently overlooked physical examination technique due to the plethora of advancing technologies.[3] However, the importance that healthcare practitioners understand this examination remains important because it is not only resourceful but is also diagnostically valuable and can be easily repeatable.[3]

Function

The JVP tracing is a measurement of the right atrial pressure (RAP) that can provide the status of a patient’s intravascular volume. The JVP tracing can be obtained from inserting a central line into the superior vena cava or, less invasively, can be observed from the bedside.[4] At the bedside, the JVP is often observed at the right side of the patient’s neck, more specifically it can be seen passing diagonally over the top of the sternocleidomastoid muscle. Next, once the patient is in a comfortably reclined position, a penlight can be pointed at a 45-degree angle towards the midline of the neck. The examiner should now be able to observe and measure the venous pulsations. The height of the JVP can be measured by intersecting 2 rulers perpendicularly, one ruler extending horizontally from the observed JVP and the other ruler extending vertically from the sternal angle of Louis.[5][6] The distance from the sternal angle to the intersection is then measured. Finally, the height of JVP is simply calculating by adding the distance measured, plus the constant distance from the midpoint of the RA to the sternal angle (5 cm HO).[7][8] The midpoint of the RA is added because the JVP is defined as the vertical distance above this point. Normally, the JVP is between 6 to 8 cm H2O.

Mechanism

The tracings of the jugular venous pulse wave, which can be observed using cardiac catheterization, are said to be biphasic due to the presence of alternating peaks and troughs.[1][9] The tracing begins with an "A" wave peak that corresponds to the contracting right atrium (atrial systole), next there is a "C" wave peak that represents the contracting right ventricle (ventricular systole). Following the “C” wave there is an "X" (X prime) descent due to the downward displacement of the tricuspid valve. [10] Additionally, there is also an “X” descent that follows the "A" wave which represents atrial relaxation and the resulting rapid atrial filling that ensues (atrial systole).[11] The increase in venous pressure that occurs due to the closure of the tricuspid valve creates the third and final peak, known as the “V wave.” Finally, as the tricuspid valve opens and the blood in the right atrium empties into the right ventricle (ventricular diastole), this is the final trough, known as the “Y descent” on the pressure tracing.[11]

Pathophysiology

The first peak observed in a normal jugular venous pulse wave tracing, the "A" wave, represents the contraction of the atria (atrial systole). Therefore, in patients with atrial fibrillation, the "A" wave is often attenuated due to the absence of atrial contraction.[10][11][12] Furthermore, the absence of contraction in atrial fibrillation additionally means atrial relaxation must also not be occurring, causing an attenuation of the "X" descent.[12] On the contrary, the "A" wave can be more pronounced, and the "Y" descent can be slightly attenuated when there is an increased resistance of blood flow traveling through the right atrium. Increased resistance across the tricuspid valve is often seen in patients with pulmonary hypertension, tricuspid stenosis, and pulmonic stenosis.[13][14][15][16][17]

The chronological sequence of the atria contracting before the ventricles is important for the shuttling of blood through the circulatory system. When this sequence becomes asynchronous, such as what is seen with third-degree atrioventricular heart block, this can cause the atria and ventricles to contract at the same time.[18][19][1] This can, unfortunately, prevent the shuttling of blood through the tricuspid valve due to the force of ventricular contraction. As a result, the easily discernible "Cannon A wave" can be seen on the jugular venous pulse wave tracing and even on physical exam.[20][21]

Tricuspid regurgitation occurs during systole, as a portion of blood is inadvertently sent back to the atrium through an incompetent tricuspid valve, rather than through the pulmonary arteries.[22] This is also quite noticeable in pulse tracings, as there can be a very prominent attenuation of the "X" descent or even the formation of a "CV" wave. A "CV" wave, which occurs when the "X" descent diminishes, can be observed in severe cases of tricuspid regurgitation.[20][23]

The "Y" descent can also be significantly attenuated because of the inability of the right atrium to relax during ventricular diastole.[24] The fixed perimeter of the fluid-filled pericardial sac results in increased pressure on the right atrium during its emptying of blood into the right ventricle. Although there is blood leaving the atrium potentially relieving pressure on the atrium, this relief is immediately negated by the pressure from the upward shift of fluid within the pericardial sac as a result of the expansion of the right ventricle.[25][26][27] This phenomenon is known as cardiac tamponade. Cardiac tamponade can be characterized on a JVP tracing as a severely attenuated or absent "Y" descent. On the contrary, one can observe a very prominent "Y descent' (Friedreich's sign) with constrictive pericarditis due to the limited ability of the right ventricle to expand during ventricular diastole.[28][29]

Clinical Significance

Critical bedside examination of the jugular venous pulse (JVP) provides an invaluable amount of information relating to both disease process and medication management. Using the method above to examine the height of the JVP, clinicians are able to interpret the volume status of patients. Simply stated, an elevated JVP of greater than 9 cm H2O (venous hypertension) along with other symptoms can help distinguish between left and right heart failure, suggest pericardial disease and suggest some specific types of arrhythmias.[4] Conversely, a low JVP of less than 5 cm H2O can reflect either hypovolemia or the use of diuretics. The JVP assessment used alongside with other diagnostic cardiac testing can help the clinician to make the proper diagnosis and guide treatment decisions.[4]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Jugular Venous Pulsation - Questions

Take a quiz of the questions on this article.

Take Quiz
What wave on the jugular pressure curve usually correlates with the first heart sound?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The C-wave of the jugular pulse occurs:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The jugular veins may be used as a manometer to estimate right atrial pressure. Select the incorrect statement about this process.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following are the correct landmarks for bedside assessment of the jugular venous pressure (JVP)?

(Move Mouse on Image to Enlarge)
  • Image 125 Not availableImage 125 Not available
    Contributed by Gregory Wilkerson, RN, BSN
Attributed To: Contributed by Gregory Wilkerson, RN, BSN



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A middle-aged male undergoes open heart surgery to bypass two coronary arteries, replace the aortic valve and repair the mitral valve. The surgery is difficult, but the patient is gradually weaned off cardiopulmonary bypass without any problems. In the ICU a few hours after the surgery, the jugular venous pressure is shown. What investigation will you order next for this patient?

(Move Mouse on Image to Enlarge)
  • Image 6118 Not availableImage 6118 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 72-year-old male construction worker presents to the emergency department with difficulty breathing and sudden onset palpitations. His past medical history includes 25 years of hypertension. The patient admits to a 50 pack-year history of smoking. An electrocardiogram (ECG) displays a heart rate of 130 beats per minute with irregularly irregular R-R intervals, absent P waves, and a narrow QRS complex. Which of the following abnormalities are most likely to be seen, while this patient is symptomatic, on a jugular venous pulse tracing?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 40-year-old man presented to the emergency department with complaints of fever and malaise. He admits to a history of intravenous drug abuse and a 25 pack-year history of smoking. After an echocardiogram is completed, a diagnosis of endocarditis is made. On auscultation, a holosystolic murmur is best heard at the left second and third intercostal spaces and is noted to increase with inspiration. If a central line is inserted into the superior vena cava, which of the jugular venous pulse (JVP) tracings is most characteristic in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Jugular Venous Pulsation - References

References

Applefeld MM, The Jugular Venous Pressure and Pulse Contour null. 1990     [PubMed]
McGee SR, Physical examination of venous pressure: a critical review. American heart journal. 1998 Jul     [PubMed]
Metkus TS,Kim BS, Bedside Diagnosis in the Intensive Care Unit. Is Looking Overlooked? Annals of the American Thoracic Society. 2015 Oct     [PubMed]
Chua Chiaco JM,Parikh NI,Fergusson DJ, The jugular venous pressure revisited. Cleveland Clinic journal of medicine. 2013 Oct     [PubMed]
Economides E,Stevenson LW, The jugular veins: knowing enough to look. American heart journal. 1998 Jul     [PubMed]
Cook DJ,Simel DL, The Rational Clinical Examination. Does this patient have abnormal central venous pressure? JAMA. 1996 Feb 28     [PubMed]
Ewy GA, Bedside evaluation of the jugular venous pulse in the acute care setting. Acute care. 1983-1984     [PubMed]
Seth R,Magner P,Matzinger F,van Walraven C, How far is the sternal angle from the mid-right atrium? Journal of general internal medicine. 2002 Nov     [PubMed]
Pyhel HJ,Stewart J,Tavel ME, Clinical assessment of calibrated jugular pulse recording. British heart journal. 1978 Mar     [PubMed]
Fukuda N,Oki T,Iuchi A,Tabata T,Yamada H,Takeichi N,Shinohara H,Soeki T,Yui Y,Tamura Y, Right heart flow dynamics after tricuspid valve annuloplasty. Characteristics and time course. Japanese heart journal. 1998 May     [PubMed]
Lee CH,Xiao HB,Gibson DG, Jugular venous 'a' wave in dilated cardiomyopathy: sign of abbreviated right ventricular filling time. British heart journal. 1991 Jun     [PubMed]
Silverman ME, From rebellious palpitations to the discovery of auricular fibrillation: contributions of Mackenzie, Lewis and Einthoven. The American journal of cardiology. 1994 Feb 15     [PubMed]
Devine PJ,Sullenberger LE,Bellin DA,Atwood JE, Jugular venous pulse: window into the right heart. Southern medical journal. 2007 Oct     [PubMed]
Chen JP, Back to basics: editorial review of     [PubMed]
Ma TS,Paniagua D,Denktas AE,Jneid H,Kar B,Chan W,Bozkurt B, Usefulness of the Sum of Pulmonary Capillary Wedge Pressure and Right Atrial Pressure as a Congestion Index that Prognosticates Heart Failure Survival (from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness Trial). The American journal of cardiology. 2016 Sep 15     [PubMed]
Stojnic BB,Brecker SJ,Xiao HB,Gibson DG, Jugular venous 'a' wave in pulmonary hypertension: new insights from a Doppler echocardiographic study. British heart journal. 1992 Aug     [PubMed]
Ranganathan N,Sivaciyan V, Abnormalities in jugular venous flow velocity in pulmonary hypertension. The American journal of cardiology. 1989 Mar 15     [PubMed]
Vigo V,Lisi P,Galgano G,Lomonte C, Lancisi's sign and central venous catheter tip position: a case report. The journal of vascular access. 2018 Jan     [PubMed]
Hosoi K,Fukuda N,Iuchi A,Ogawa S,Hayashi M,Fujimoto T,Kiyoshige K,Fukuda K,Oki T, [Characteristics of jugular venous pulse and its genesis in Ebstein's anomaly]. Journal of cardiology. 1992     [PubMed]
Morgan DE,Norman R,West RO,Burggraf G, Echocardiographic assessment of tricuspid regurgitation during ventricular demand pacing. The American journal of cardiology. 1986 Nov 1     [PubMed]
Luisada AA,Singhal A,Kim K, The jugular and hepatic tracings in normal subjects and in conduction defects. Acta cardiologica. 1983     [PubMed]
Mulla S,Siddiqui WJ, Tricuspid Regurgitation (Tricuspid Insufficiency) null. 2018 Jan     [PubMed]
ur Rehman H, Images in clinical medicine: Giant C-v waves of tricuspid regurgitation. The New England journal of medicine. 2013 Nov 14     [PubMed]
Zhang S,Kerins DM,Byrd BF 3rd, Doppler echocardiography in cardiac tamponade and constrictive pericarditis. Echocardiography (Mount Kisco, N.Y.). 1994 Sep     [PubMed]
Kearns MJ,Walley KR, Tamponade: Hemodynamic and Echocardiographic Diagnosis. Chest. 2018 May     [PubMed]
Sivaciyan V,Ranganathan N, Transcutaneous doppler jugular venous flow velocity recording. Circulation. 1978 May     [PubMed]
Stashko E,Meer JM, Cardiac Tamponade null. 2018 Jan     [PubMed]
Yacoub M,Bhimji SS, Pericarditis, Constrictive-Effusive null. 2018 Jan     [PubMed]
Yadav NK,Bhimji SS, Constrictive Pericarditis null. 2018 Jan     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Thoracic. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Thoracic, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Thoracic, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Thoracic. When it is time for the Surgery-Thoracic board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Thoracic.