Physiology, Edema


Article Author:
Daniella Lent-Schochet


Article Editor:
Ishwarlal Jialal


Editors In Chief:
Yvonne Carter
Jason Wallen


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
1/28/2019 7:39:45 PM

Introduction

The definition of edema is a swelling due to the expansion of interstitial fluid volume in tissues or an organ. Several clinical conditions present with edema, making it a critical clinical feature for diagnostic medicine. Edema can present in numerous forms including unilateral, bilateral, localized, or generalized edema. Therefore, it is vital to assess the unique presentation and mechanism of edema to understand how it relates to disease pathophysiology, clinical presentation, and treatment. This review will present an overview of the general and cellular characteristics of edema, the mechanism, and pathophysiology of edema, and how edema relates to a specific disease presentation and development.

Issues of Concern

The average human is made up of between 50 to 60 percent water. Total body water divides into two main compartments: intracellular and extracellular comprising two-thirds and one-third total body water, respectively. Of these compartments, the extracellular space is subdivided into two additional categories: interstitial and intravascular, making up sixty and forty percent of extracellular space, respectively. Fluid maintenance in the human body is a delicate balance of fluid intake and output. The interstitial fluid, the fluid between cells, is derived from capillaries with a similar solute content to plasma except for protein content.[1][2]

Several factors control the direction of flow of interstitial fluid including hydrostatic pressure, oncotic pressure, endothelial integrity, and lymphatic systems. These factors are thought to be driven by Starling’s law, which describes fluid movement across capillaries being proportional to capillary permeability, trans-capillary hydrostatic pressure differences, and trans-capillary oncotic pressure differences. The equation for Starling’s law is as follows: Filtration= Kf x (Pc – Pif – Oc + Oif). Where Pc is the hydrostatic capillary pressure, Pif is the interstitial fluid hydrostatic pressure, Oc is the capillary plasma colloid osmotic pressure, Oif is the interstitial fluid colloid osmotic pressure, and Kf is the capillary filtration coefficient (permeability x surface area).[3]

Capillary pressure forces fluid from the capillaries into the interstitium where the arterial end pressure is higher than the venous end. The interstitial fluid pressure varies partly based on the density of tissues, with higher values in dense connective tissue. The value of interstitial fluid pressure can be a positive or negative value, with positive values being due to fluid forced into the capillary and negative values being fluid forced into the interstitium. Plasma oncotic pressure is due to proteins, which do not pass freely between the interstitium and plasma, and therefore the proteins exert an osmotic effect across capillary walls. Albumin is the most abundant plasma protein. A small amount of protein exists in the interstitium and forces some fluid out of capillary walls. This force is the interstitial oncotic pressure. Together, these factors contribute independently or cooperatively to form edema.

Cellular

Edema is believed to be the outward filtration predominating the arterial end of the capillary, and as hydrostatic pressures fall, fluid reverts to the capillary from the interstitium driven by the oncotic pressure gradient. However, further investigation shows that in most capillary beds, there is a net filtration that continues throughout the capillary length, and many Starling relationships are invalid.[4] Traditionally, the reflection coefficient of proteins across the capillary wall is assumed to be approximately one. Albumin diffusion through capillary pores, however, leads to half of the body’s albumin content as extravascular, and interstitial oncotic pressure is 30 to 60 percent of plasma oncotic pressure when measured.[3] The structure of the interstitial space leads to a hemodynamic difference compared to the Starling equation because these structures are far more complicated than previously believed. Interstitial space cannot be protein-free ultrafiltrates of plasma, and as a result, they become a triphasic system with free-flowing fluids, a gel phase with large polyanionic glycosaminoglycans (GAG) molecules, and a collagen matrix. GAG, with sodium ions bound to it, exerts an osmotic pressure via capillary filtration, while the collagen matrix hydrostatic pressure opposes this force.[3].

The capillary is lined with glycocalyx with a complex network of GAG molecules and other glycoproteins, creating a filtration barrier that contains clefs where capillary filtration occurs.[4][5][6] Albumin gets excluded from the luminal surface, and therefore, intravascular albumin exerts more oncotic pressure than initially predicted from direct measurements of interstitial albumin concentration. Therefore, the actual net filtration depends more on colloid oncotic pressure of fluid below the endothelial glycocalyx than on the capillary membrane. There is emerging data suggesting that lymphangiogenesis regulation is by interstitial sodium bound to GAG molecules.[7] This begs the question of the precise etiology and pathophysiology of edema, and if multiple factors are more often contributing to the onset of edema. 

Development

Despite current research developments on the cellular mechanisms of edema, edema development requires alteration in one or more Starling forces in the direction favoring increased net filtration and/or inadequate removal of filtered fluid by lymphatic drainage. Possible alterations include elevated capillary hydrostatic pressure, increased capillary permeability, higher interstitial oncotic pressure, lower plasma oncotic pressure, lymphatic obstruction, or a combination of these factors.[3]

Several factors protect against edema including increased lymphatic flow and contractility in the presence of tissue edema and/or removal of excessive fluid. Fluid entry in the interstitium ultimately raises the interstitial hydraulic pressure and thus reduces the pressure gradient to favor filtration. Fluid entry into the interstitium also lowers interstitial oncotic pressure by dilution and lymphatic removal of interstitial proteins.

Organ Systems Involved

Several organs play a role in edema. The lymphatic system drives fluid and protein away from the interstitium, and a system of fine lymphatics provide a network of channels throughout the body via lymph nodes to the thoracic duct. Valves function in the lymphatic system to provide a one-way outflow. As fluid moves through the body, it undergoes excretion through the kidneys, lungs, feces, sweat, and skin. Therefore, a variety of organs may be involved in situations of fluid overload.

Capillary dynamics is critically different in the vasculature of various organs.[8] For example, hepatic sinusoids are permeable to proteins, and consequently, the capillary and interstitial oncotic pressure is approximately equal with a minimal transcapillary oncotic pressure gradient.[9] As a result, the hydraulic pressure gradient, which favors filtration, is essentially unopposed.

Alveolar capillaries also have a lower capillary hydraulic pressure, which is due to perfusion from the low pressures in the right ventricle. Alveolar capillaries are also more permeable than skeletal muscle to protein, resulting in smaller transcapillary hydraulic and oncotic pressure gradients.[10]

Kidneys also play a critical role in edema. The renal sodium and water retention seen in heart failure and cirrhosis result from a hypovolemic-induced fall in glomerular filtration rate (GFR) and increased tubular reabsorption.[11] The hypovolemia induced state leads to excess demand on the kidneys to retain sodium and water to maintain perceived volume loss, which is partly mediated by increased activity of the renin-angiotensin-aldosterone and sympathetic nervous systems. The goal of this response is to, at least initially, increase venous return to the heart, thereby allowing hemodynamic stability.[11][12]

Function

It is important to consider that often sodium and water retention in edematous states can be an appropriate compensation to restore tissue perfusion. Consequentially diuretics may improve symptoms due to edema but may reduce tissue perfusion. The hemodynamic effects are drastically affected by inappropriate renal fluid retention. In this case, interstitial volumes expand, and it is critical to remove the excess fluids.

Edema rarely occurs with minor changes in hemodynamic forces. In fact, studies have identified that a 15 mmHg increase in the gradient favoring filtration is needed to identify edema clinically.[9] This protective response is due to lymphatic flow and contractility increasing in the setting of edema and fluid entering the interstitium, eventually leading to increased interstitial hydraulic pressure. Thus, there is a reduced pressure gradient that favors filtration.[9] Edema, therefore, occurs when there is excessive interstitial fluid volume, leading to the clinical presentation edema.

Mechanism

Edema formation occurs into two fundamental steps. Firstly, an alteration in capillary hemodynamics favoring the movement of fluids from the vascular space into the interstitium. Additionally, retention of dietary or intravenously administered sodium and water via the kidneys can cause edema. Initially, fluid moves from the vascular space into the interstitium, and consequently reduces plasma volume and reduces tissue perfusion. To respond to these changes the kidney retains sodium and water. There is some fluid that stays in the vascular space, and plasma volume returns towards normal. However, this change in capillary hemodynamic leads to retained fluid entering the interstitium and results in edema.[3]

Edema can also form as a response to elevated capillary hydraulic pressures or increased capillary permeability, disruption of the endothelial glycocalyx, decreased interstitial compliance, lower plasma oncotic pressure, or a combination of these factors. Lymphatic obstruction can also lead to fluid buildup because, under normal conditions, filtered fluids do not return to the systemic circulation.[5] Edema can be generalized or localized, and gravity plays a critical role in fluid accumulation; thus the lower extremities are particularly prone to fluid collection.

Related Testing

Proteinuria is an effective way to distinguish between different causes of edema. If there is severe proteinuria (>0.5 g/dL), this may suggest renal disease, preeclampsia, or renal vein thrombosis. On the other hand, minimal proteinuria (<0.5 g/dL) suggests etiologies such as congestive heart failure, chronic liver disease, malnutrition/malabsorption, hypothyroidism, varicose veins, and inferior vena cava thrombosis below the renal vein. In patients with generalized edema, it is beneficial to obtain urine tests for red blood cells, casts, and albuminuria. Blood chemistries can also be helpful including urea, creatinine, albumin, brain natriuretic peptide (BNP)/proBNP, bilirubin, alkaline phosphatase, transaminases, and INR to rule in or rule out renal disease, cardiac failure, chronic liver disease, etc. A complete blood count to evaluate for anemia, leukocytosis, or leukopenia can also help to identify the etiology of edema. D-dimer has a high sensitivity and therefore has a role in ruling out conditions such as deep vein thrombosis or a pulmonary embolism. Additional testing such as chest x-ray, ultrasound of the abdomen, and echocardiography have their basis in the clinical presentation and core laboratory investigations. Rarely, renal biopsy hepatic biopsy is needed to make a precise diagnosis that will dictate therapy.  

Pathophysiology

Anything that raises capillary pressures, reduces oncotic pressure, increases endothelial permeability, or impairs lymphatic drainage will result in edema. Raised capillary pressure is a common cause of edema including cardiac failure such as right ventricular failure, left ventricular failure leading from pulmonary edema, or congestive cardiac failure. Capillary hydraulic pressure has autoregulatory capacity allowing changes in resistance at the precapillary sphincter and thus determines the arterial pressure forced onto the capillary. In contrast, the venous end of the capillary has poor regulation, and, as a result, venous pressure changes lead to parallel changes in capillary hydraulic pressure. Venous pressure can increase in two settings. First, when blood volume is expanded, and second, when there obstruction at the venous end. Heart failure and renal disease lead to volume expansion, while cirrhosis or right heart failure leads to venous obstruction, both instances ultimately resulting in edema.[4][5][6][7] Local venous obstruction can also cause increased capillary pressure such as deep vein thrombosis, external compression, and superior vena cava obstruction.

Reduced oncotic pressure, typically due to hypoalbuminemia, occurs in several diseases such as renal disease where the loss of albumin occurs across the glomerulus (nephrotic syndrome), and common causes may include diabetic nephropathy, lupus nephropathy, amyloidosis, minimal change disease, membranous glomerulonephritis, HIV-associated nephropathy, focal segmental glomerulosclerosis, IgA nephropathy, light chain associated renal disorders, chronic glomerulonephritis, and radiation nephropathy. Hepatic disease, such as cirrhosis and chronic liver disease, from inadequate albumin synthesis, as well as malabsorption/malnutrition, such as kwashiorkor, from inadequate albumin intake and synthesis, can also lead to reduced oncotic pressure and ultimately edema.

Increased capillary permeability, typically due to vascular injury, results in edema for several reasons. When vessels become injured, the porosity of the capillary walls increases, and, consequently, net filtration increases. Furthermore, the coefficient of proteins across the capillary wall decreases, thus narrowing the difference between the oncotic pressure of the capillary and the oncotic pressure below the endothelial glycocalyx. The oncotic pressure gradient reduces and edema results. Typically, capillary permeability increases in the setting of burn patients where both histamine and oxygen free radicals induce microvascular and direct physical injury.[13] Treatment with recombinant human interleukin 2 or vascular endothelial growth factor also promotes capillary permeability (PMID:3495213, PMID:10836914). Any instance where the release of cytokines such as interleukin 1 or tumor necrosis factor occurs, as in respiratory distress syndrome, increases pulmonary capillary permeability resulting in edema, especially pulmonary edema.[14][15]  Some even suggest that kwashiorkor or diabetes mellitus may also lead to edema in part due to increased capillary permeability.[16][17]

Eating after three or more days of fasting leads to edema, which is speculated to be due to increased insulin levels after re-feeding with carbohydrates and thus resulting in enhanced reabsorption of sodium.[18]

Additionally, lymphatic obstruction is a well-known cause of edema, and common causes include lymphedema, tumors, fibrosis, inflammation, infection such as Filariasis due to Wuchereria bancrofti, surgery, and congenital abnormalities. Myxedema, typically due to thyroid abnormalities, leads to accumulation of interstitial albumin and other proteins, thus leading to excessive interstitial protein and fluid without increased lymphatic flow. Some suggest that this is due to filtered proteins binding to interstitial mucopolysaccharides and preventing removal by the lymphatics.[19] There are many reasons edema exists, but the specific physiology depends on the underlying cause of the edema.

Clinical Significance

There are many causes of edema and presentation will differ according to the etiology. Generally, edema presents as ankle swelling and may extend higher. Common causes include congestive cardiac failure, constrictive pericarditis, nephrotic syndromes, liver disease (cirrhosis), allergic reactions (urticaria or angioedema), malabsorption, protein calorie malnutrition, obstructive sleep apnea, pregnancy, or medication side effects. When there is unilateral or asymmetric edema, venous thrombosis is suspected. In the case of heart failure, the specific etiology is important when distinguishing the exact location of edema[20]. For example, coronary heart disease, hypertension, or left-sided valvular disease, typically have pulmonary but not peripheral edema. In contrast, cor pulmonale, is initially pure right ventricular failure, and thus there is edema in the extremities. Cardiomyopathies produce equivalent involvement of right and left ventricles and often lead to simultaneous pulmonary and peripheral edema[21].  An S3 heart sound, especially in the presence of pulmonary or generalized edema, is also highly suggestive of heart failure. Classic signs of congestive heart failure include a chest x-ray showing increased pulmonary vasculature, cardiomegaly, haziness of vascular margins, which suggest fluid overload. Patients may also present with shortness of breath and pitting edema.

Localized edema is generally due to cellulitis, chronic venous insufficiency, deep vein thrombosis, lymphedema, or May-Thurner syndrome. When the edematous area is warm and patient’s vitals are unstable (febrile, tachycardic, or tachypneic), then infectious and/or thrombotic causes should be suspected.

Medications causing edema are generally anti-hypertensives (calcium channel blockers, minoxidil, or hydralazine), antidepressants (trazodone and MAO inhibitors), antivirals (acyclovir), chemotherapeutics (docetaxel, cyclophosphamide, and cyclosporine), fludrocortisone, pramipexole, hormones (estrogens, progesterones, and anabolic steroids), thiazolidinediones, and non-steroidal anti-inflammatory drugs (celecoxib and ibuprofen)[22][23][24][25][26]

Edema can also occur in the brain leading to increased intracranial pressure. This is often fatal if left untreated. Intracranial edema can occur due to several causes including generalized hypoxia, injury, abscesses, or tumors.

Fluid in the body cavities is another clinical cause of edema. Etiologies include pleural effusion (such as heart failure, inflammation, or tumors), pericardial effusion (such as in inflammation or tumors), or ascites (due to cirrhosis, heart failure, or tumors). Ascites will typically present with abdominal distention, shifting dullness, and a fluid wave on percussion of the abdomen.

The treatment for generalized edema largely depends on the etiology. The first step in treatment is to treat the underlying cause. Certain instances, such as pulmonary edema, can be a life-threatening condition requiring immediate therapy.[10]. In other cases, the reduction of interstitial fluids can be accomplished more slowly. If retention occurs because of compensatory causes, such as in cirrhosis or heart failure, then fluid removal with diuretics needs to be well-balanced since arterial blood volume, and thus tissue perfusion, can be compromised during treatment[27]. When edema is caused by heart failure, nephrotic syndrome, or sodium retention, mobilization of edema fluid can occur rapidly[28]. Specifically, when a patient has anasarca, removal of two to three liters of fluid in 24 hours is acceptable without clinically significant changes in plasma volume[29]

Dietary modifications can also help reduce fluid overload and consider decreasing dietary sodium intake to 2 g/dL and increase protein intake to 1g/kg/dL if hypoalbuminemia exists. Diuretics, specifically loop diuretics such as furosemide, bumetanide, and torsemide, can reduce edema fluid. Caution needs to be taken when using diuretics in patients with cirrhosis and ascites of the liver with no peripheral edema or with localized edema due to venous of lymphatic obstruction, or malignancy[30]. These cases may lead to hypovolemia after the decrease of fluid[27] The clinical profile for edema depends on the etiology, and management is maintained by careful analysis of the patient’s underlying disease.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Edema - Questions

Take a quiz of the questions on this article.

Take Quiz
A 57-year-old patient with severely uncontrolled diabetes mellitus presents with a loss of appetite, fatigue, and significant swelling in his feet, ankles, and hands. The provider orders a urinalysis and identifies significant protein in the patient's urine. Why does this patient's low plasma oncotic pressure lead to increased tissue edema?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
In adults, what is the most common cause of bilateral lower extremity edema?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient is found in bed with his arm between the bed rail and the mattress and moderate edema. Which of the following would be appropriate management?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 45-year-old patient comes to the office for a 1-day history of swelling of the lower extremities bilaterally. When the examiner presses their finger over the pretibial area, there is a 4 mm depression that returns to baseline after 10 seconds. What degree of edema is described?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 52-year-old woman comes to her provider because she noticed bilateral leg swelling. She is an avid runner and has been using naproxen daily for persistent right heel pain. She developed foot swelling 3 days ago. She has well-controlled type 1 diabetes mellitus and hypertension. Her only other medication is benazepril and insulin. Examination shows 1+ edema bilaterally up to her mid-calf. Which of the following is the most likely cause of her edema?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 67-year-old male presents to the emergency department due to a 2-week history of lower extremity swelling, and shortness of breath. He has no chills, cough, chest pain, or fever. He was using a diuretic in the past but stopped taking it three months ago due to frequent urination. His vitals are within normal limits. Physical exam shows bilateral trace pitting edema over the lower extremities to the knees, and bilateral crackles are heard on lung auscultation. What is the most likely diagnosis given the patient’s presentation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 21-year-old woman presents with peripheral and periorbital edema. She has previously been healthy and takes no medications. Her blood pressure is 148/91 mmHg, and she is afebrile. The patient has mild basilar dullness on lung examination, and her cardiac examination is normal. She has periorbital edema and soft doughy 3+ edema in her legs. Her serum creatinine is 0.6 mg/dL, and her serum albumin is 2.1 g/L. Urinalysis shows 3+ protein, no RBC or WBC, and some oval fat bodies. What is the next, most important initial diagnostic test?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 45-year-old male with hepatitis C and a previous liver biopsy showing cirrhosis presents with a 1-year history of ascites requiring repeated paracentesis. Despite treatment with diuretics, his ascites persists, and he has now developed generalized edema, especially in his lower extremities. Review of his records shows he has a 20-year history of an alcohol use disorder, but he has been abstinent for 2 years. He has a prior hospitalization 6 months ago for hepatic encephalopathy. On physical exam he appears thin, has scleral icterus, palmar erythema, gynecomastia, and abdominal distention with a positive fluid wave on percussion of the abdomen. He has no asterixis. Which of the following is the most likely cause of his fluid accumulation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Edema - References

References

Cho S,Atwood JE, Peripheral edema. The American journal of medicine. 2002 Nov;     [PubMed]
Miserocchi G,Negrini D,Passi A,De Luca G, Development of lung edema: interstitial fluid dynamics and molecular structure. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society. 2001 Apr;     [PubMed]
Bhave G,Neilson EG, Body fluid dynamics: back to the future. Journal of the American Society of Nephrology : JASN. 2011 Dec;     [PubMed]
Levick JR,Michel CC, Microvascular fluid exchange and the revised Starling principle. Cardiovascular research. 2010 Jul 15;     [PubMed]
Reed RK,Rubin K, Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovascular research. 2010 Jul 15;     [PubMed]
Woodcock TE,Woodcock TM, Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. British journal of anaesthesia. 2012 Mar;     [PubMed]
Wiig H,Schröder A,Neuhofer W,Jantsch J,Kopp C,Karlsen TV,Boschmann M,Goss J,Bry M,Rakova N,Dahlmann A,Brenner S,Tenstad O,Nurmi H,Mervaala E,Wagner H,Beck FX,Müller DN,Kerjaschki D,Luft FC,Harrison DG,Alitalo K,Titze J, Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. The Journal of clinical investigation. 2013 Jul;     [PubMed]
Renkin EM, B. W. Zweifach Award lecture. Regulation of the microcirculation. Microvascular research. 1985 Nov;     [PubMed]
Crandall ED,Staub NC,Goldberg HS,Effros RM, Recent developments in pulmonary edema. Annals of internal medicine. 1983 Dec;     [PubMed]
Watkins L Jr,Burton JA,Haber E,Cant JR,Smith FW,Barger AC, The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. The Journal of clinical investigation. 1976 Jun;     [PubMed]
Dzau VJ,Colucci WS,Hollenberg NK,Williams GH, Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation. 1981 Mar;     [PubMed]
Taylor AE, Capillary fluid filtration. Starling forces and lymph flow. Circulation research. 1981 Sep;     [PubMed]
Deitch EA, The management of burns. The New England journal of medicine. 1990 Nov 1;     [PubMed]
Ohlsson K,Björk P,Bergenfeldt M,Hageman R,Thompson RC, Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990 Dec 6;     [PubMed]
Colletti LM,Remick DG,Burtch GD,Kunkel SL,Strieter RM,Campbell DA Jr, Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. The Journal of clinical investigation. 1990 Jun;     [PubMed]
Hommel E,Mathiesen ER,Aukland K,Parving HH, Pathophysiological aspects of edema formation in diabetic nephropathy. Kidney international. 1990 Dec;     [PubMed]
Mayatepek E,Becker K,Gana L,Hoffmann GF,Leichsenring M, Leukotrienes in the pathophysiology of kwashiorkor. Lancet (London, England). 1993 Oct 16;     [PubMed]
Veverbrants E,Arky RA, Effects of fasting and refeeding. I. Studies on sodium, potassium and water excretion on a constant electrolyte and fluid intake. The Journal of clinical endocrinology and metabolism. 1969 Jan;     [PubMed]
Parving HH,Hansen JM,Nielsen SL,Rossing N,Munck O,Lassen NA, Mechanisms of edema formation in myxedema--increased protein extravasation and relatively slow lymphatic drainage. The New England journal of medicine. 1979 Aug 30;     [PubMed]
Gorman WP,Davis KR,Donnelly R, ABC of arterial and venous disease. Swollen lower limb-1: general assessment and deep vein thrombosis. BMJ (Clinical research ed.). 2000 May 27;     [PubMed]
Blankfield RP,Finkelhor RS,Alexander JJ,Flocke SA,Maiocco J,Goodwin M,Zyzanski SJ, Etiology and diagnosis of bilateral leg edema in primary care. The American journal of medicine. 1998 Sep;     [PubMed]
Pettinger WA,Keeton K, Altered renin release and propranolol potentiation of vasodilatory drug hypotension. The Journal of clinical investigation. 1975 Feb;     [PubMed]
Russell RP, Side effects of calcium channel blockers. Hypertension (Dallas, Tex. : 1979). 1988 Mar;     [PubMed]
Clive DM,Stoff JS, Renal syndromes associated with nonsteroidal antiinflammatory drugs. The New England journal of medicine. 1984 Mar 1;     [PubMed]
Christy NP,Shaver JC, Estrogens and the kidney. Kidney international. 1974 Nov;     [PubMed]
Trudeau ME,Eisenhauer EA,Higgins BP,Letendre F,Lofters WS,Norris BD,Vandenberg TA,Delorme F,Muldal AM, Docetaxel in patients with metastatic breast cancer: a phase II study of the National Cancer Institute of Canada-Clinical Trials Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1996 Feb;     [PubMed]
Pockros PJ,Reynolds TB, Rapid diuresis in patients with ascites from chronic liver disease: the importance of peripheral edema. Gastroenterology. 1986 Jun;     [PubMed]
Wilcox CS, New insights into diuretic use in patients with chronic renal disease. Journal of the American Society of Nephrology : JASN. 2002 Mar;     [PubMed]
Boyer TD, Removal of ascites: what's the rush? Gastroenterology. 1986 Jun;     [PubMed]
Brater DC, Diuretic therapy. The New England journal of medicine. 1998 Aug 6;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Thoracic. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Thoracic, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Thoracic, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Thoracic. When it is time for the Surgery-Thoracic board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Thoracic.