Physiology, Residual Volume


Article Author:
John Lofrese


Article Editor:
Sarah Lappin


Editors In Chief:
Dustin Constant
Donald Kushner


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
4/25/2019 12:39:33 AM

Introduction

Residual volume (RV) is the volume of air that remains in the lungs after maximum forceful expiration. In other words, it is the volume of air that cannot be expelled from the lungs. This volume remains unchanged regardless of the lung volume at which expiration was started. Reference values for residual volume are considered to be 1 to 1.2 L, but these values are dependent on many factors including age, gender, height, weight, and physical activity levels.

The residual volume is an important component of the total lung capacity (TLC) and the functional residual capacity (FRC). TLC is the total volume of the lungs at maximal inspiration. FRC is the amount of air remaining in the lungs after a normal, physiologic expiration (Figure 1A). The TLC, FRC, and RV are absolute lung volumes and cannot be measured directly with spirometry. Instead, they must be calculated using techniques such as gas dilution or body plethysmography. Measuring the residual volume can give an indication of lung physiology and pathology.[1][2][3]

Function

The residual volume functions to keep the alveoli open even after maximum expiration. In healthy lungs, the air that makes up the residual volume allows for continual gas exchange to occur between breaths. The oxygen-depleted residual air is then mixed with newly inhaled air to improve gas exchange at the alveoli.

Mechanism

The mechanics of breathing may seem complicated, but it is important to remember that air will flow from higher pressure to lower pressure. During tidal breathing, the inspiration and expiration at physiologic rest, the volume of air entering and leaving the lungs is known as the tidal volume (TV). On tidal inspiration the pleural pressure (Ppl) drops from -5 cmHO to -8 cmHO, leading the alveolar pressure (Palv) to decrease 1 cmHO below atmospheric pressure. As a result, air flows into the alveoli. This is an active process requiring the rhythmic contraction of inspiratory muscles that work to expand the chest cavity. Tidal expiration is a passive process that works in reverse. The inspiratory muscles relax, decreasing the size of the chest cavity, and increasing Ppl and Palv. Once Palv is greater than atmospheric pressure, the air flows out of the lungs. 

To understand residual volume, however, it is important to look at breathing above the tidal limits, that is, breathing at maximal inspiration and expiration. During this type of breathing, the volume of air entering and leaving the lungs is known as the vital capacity (VC). VC is composed of the tidal volume, expiratory reserve volume (ERV) and inspiratory reserve volume (IRV). The ERV is the volume of air that can be forcefully exhaled after a normal resting expiration, leaving only the RV in the lungs. Forcefully exhaling the ERV is an active process requiring the contraction of expiratory muscles in the chest and abdomen. This increases Ppl and Palv above atmospheric pressure. Due to the elastic recoil of the alveoli, the pressure inside of the alveoli remains higher than that of the pleura, and the alveoli remain open. The pressure inside the airways (Paw) slowly decreases as you move up from the alveoli to the trachea as a result of increasing airway resistance. In sections of small, non-cartilaginous airways pleural pressure is greater than airway pressure and causes a collapse of the airway (Figure 1B). The air that remains in the lungs after the collapse of all small airways is the residual volume.

Related Testing

There are no ways to measure the residual volume of a patient directly. As such, other lung volumes and capacities must be measured first, and then the RV can be calculated. The first step in calculating RV is to determine the FRC. Measurement of the FRC can be done using one of the following three tests.

Helium Dilution Test

In this test, the patient inhales a known volume of air (V1) containing a known fraction of helium (FHe1) at end expiration of tidal breathing, where the volume of air left in the lungs is equal to FRC. A spirometer measures the fraction of helium after equilibration in the lungs (FHe2).

  • FRC = V1(FHe1-FHe2) / FHe2

Nitrogen Washout

The nitrogen washout test utilizes the fact that the air we breathe is roughly 80% nitrogen. A patient breathes through a 2-way valve connected to 100% oxygen on inspiration and a collection spirometer on expiration. The spirometer measures the volume of air and fraction of nitrogen expired with each breath. Once the fraction of nitrogen is below 1.5% for 3 consecutive breaths, the test is complete. The initial amount of nitrogen in the lungs must be equal to the total amount of nitrogen exhaled, and thus the FRC can be calculated.

  • FRC = exhaled x exhaled N2 / C initial alveolar N2

Body Plethysmography

Plethysmography is based on Boyle’s Law of gases. In a closed system at constant temperature, the product of pressure and volume of a known mass of gas is constant. That is to say, pressure and volume are inversely proportional.

  • P1V1 = P2V2

To conduct the test, a patient is placed inside an enclosed chamber and breathes through a spirometer that can measure changes in pressure and volume. After a period of tidal breathing, the spirometer is closed at end expiration, and the patient breathes against it. Changes in pressure at the mouthpiece are recorded. As the patient exhales, the volume of the thoracic cavity can be calculated by recording the change in pressure of the entire chamber. This test is the most accurate measure of FRC, but also the most expensive.

Once the FRC has been measured using one of these three methods, the expiratory reserve volume (ERV) and vital capacity (VC) are measured using standard spirometry. Using the measured FRC, ERV and VC we can calculate the RV and TLC with the simple equations below.

  • RV = FRC - ERV
  • TLC = VC + RV

Clinical Significance

Obstructive Lung Disease (OLD)

Obstructive lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and bronchiectasis, are characterized by airway inflammation, easily collapsible airways, expiratory flow obstruction and air trapping. In OLD, inflammation and decreased elastic recoil increase airway resistance and lead to earlier small airway closure during expiration. That is, the pleural pressure exceeds the airway pressure earlier, trapping air in the lungs. This trapped air results in pulmonary hyperinflation. Therefore patients with OLD have increase TLC, FRC and RV (Figure 1C).[4][5][6]

Body plethysmography yields a higher FRC in patients with obstructive lung disease than those measured by gas dilution techniques because it includes both well-ventilated and poorly ventilated areas of the lung. RV is generally the first volume to increase in OLD and can be a good measure to determine early disease states.

The RV/TLC ratio is used as a measure of resting pulmonary hyperinflation in patients with COPD. In a study by Shin et al., and elevated RC/TLC ratio was shown to be a significant risk factor for all-cause mortality in COPD patients.

Restrictive Lung Disease (RLD)

Restrictive lung diseases are a result of processes that restrict pulmonary expansion. These can be an intrinsic disease such as pulmonary fibrosis and sarcoidosis, or extrinsic processes like kyphosis and morbid obesity. In either case, the result is a restricted expansion, decreased lung volumes, and inadequate ventilation. In the case of RLD, the TLC, FRC, and RV will all be decreased.

The effects of obesity on lung function are a growing concern as the prevalence and severity of obesity increase. Studies have shown that increasing body mass index (BMI) correlates with lower VC, TLC, and RV, but that these values remain within normal limits. Significant decreases in FRC and ERV are seen as BMI increases, to that point that FRC approaches RV. [7][8][9]       

Drowning

An interesting clinical use for residual volume is applied during post-mortem autopsies of drowning victims. The only way that the residual volume of air in the lungs can be removed is to be replaced. In the case of drowning victims, water will replace residual air in the lungs. During autopsies, medical examiners can clamp the trachea and submerge the lungs in water. If the lungs sink, there is no residual air, and it is likely this person drowned after inhaling large amounts of water. If the lungs float, the residual volume of air remains in the lungs, and it is likely this person died before entering the water.


  • Image 6320 Not availableImage 6320 Not available
    Contributed by Lutfi, 2017; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
Attributed To: Contributed by Lutfi, 2017; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Residual Volume - Questions

Take a quiz of the questions on this article.

Take Quiz
A 65-year-old male with a 40 pack-year smoking history comes in with worsening shortness of breath on exertion. Pulmonary function tests confirm the diagnosis of chronic obstructive pulmonary disease (COPD). Which of the following changes in his lung volumes and capacities should be expected?

(Move Mouse on Image to Enlarge)
  • Image 6003 Not availableImage 6003 Not available
    Contributed by Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine. 2017;12:3. (CC by 4.0; Creative Commons Attribution 4.0 International License)
Attributed To: Contributed by Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine. 2017;12:3. (CC by 4.0; Creative Commons Attribution 4.0 International License)



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old female patient with chronic obstructive pulmonary disease is undergoing testing to follow up on her disease progression. Results of her helium dilution test show a functional residual capacity (FRC) of 2500 mL. Spirometry shows expiratory reserve volume (ERV) of 1000 mL and vital capacity of 4200 mL. What is her calculated residual volume?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
During pulmonary function testing, the patient is asked to hold their breath after tidal expiration. What two components make up the volume of air in the patient’s lungs at this point in the breathing cycle?

(Move Mouse on Image to Enlarge)
  • Image 6004 Not availableImage 6004 Not available
    Contributed by Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine. 2017;12:3. (CC by 4.0; Creative Commons Attribution 4.0 International License)
Attributed To: Contributed by Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine. 2017;12:3. (CC by 4.0; Creative Commons Attribution 4.0 International License)



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Residual Volume - References

References

Mortola JP, How to breathe? Respiratory mechanics and breathing pattern. Respiratory physiology     [PubMed]
Guillien A,Soumagne T,Regnard J,Degano B, [The new reference equations of the Global Lung function Initiative (GLI) for pulmonary function tests]. Revue des maladies respiratoires. 2018 Dec;     [PubMed]
Krol K,Morgan MA,Khurana S, Pulmonary Function Testing and Cardiopulmonary Exercise Testing: An Overview. The Medical clinics of North America. 2019 May;     [PubMed]
Kim J,Kim MJ,Sol IS,Sohn MH,Yoon H,Shin HJ,Kim KW,Lee MJ, Quantitative CT and pulmonary function in children with post-infectious bronchiolitis obliterans. PloS one. 2019;     [PubMed]
Clair C,Mueller Y,Livingstone-Banks J,Burnand B,Camain JY,Cornuz J,Rège-Walther M,Selby K,Bize R, Biomedical risk assessment as an aid for smoking cessation. The Cochrane database of systematic reviews. 2019 Mar 26;     [PubMed]
Gallucci M,Carbonara P,Pacilli AMG,di Palmo E,Ricci G,Nava S, Use of Symptoms Scores, Spirometry, and Other Pulmonary Function Testing for Asthma Monitoring. Frontiers in pediatrics. 2019;     [PubMed]
Kishaba T, Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Medicina (Kaunas, Lithuania). 2019 Mar 16;     [PubMed]
de Carvalho M,Swash M,Pinto S, Diaphragmatic Neurophysiology and Respiratory Markers in ALS. Frontiers in neurology. 2019;     [PubMed]
Lumb AB, Pre-operative respiratory optimisation: an expert review. Anaesthesia. 2019 Jan;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry Cert Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry Cert Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry Cert Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry Cert Medicine. When it is time for the Surgery-Podiatry Cert Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry Cert Medicine.