Anterior Cerebral Artery Stroke

Article Author:
Harold Matos Casano
Prasanna Tadi

Article Editor:
Gabriela Ciofoaia

Editors In Chief:
Dustin Constant
Donald Kushner

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon

4/8/2019 11:17:25 PM


Infarcts involving the territory of the anterior cerebral artery (ACA) are uncommon, accounting for a considerably small share of the total number of ischemic infarcts. The risk factors and etiology of strokes in this vascular territory are largely the same as for the other principal cerebral arteries including hypertension, dyslipidemias, diabetes mellitus, smoking, atherosclerosis, and cardioembolism. However, it is possible that the peculiar manifestations of its clinical syndromes and the suspicion that many infarcts in this arterial territory are silent,[1] could result in underdiagnosis of strokes involving the ACA or its branches.

The ACA emerges from the anterior clinoid segment of the internal carotid artery. It then continues anteromedially towards the longitudinal fissure. Near this point, the anterior communicating artery (ACoA) forms, creating an anastomosis between both ACA’s. Each ACA then advances between the two cerebral hemispheres and over the callosal sulcus in a posterior direction towards the parieto-occipital sulcus. Superficial and deep branches emerge along its course. These include Heubner’s, orbitofrontal, frontopolar, anterior internal frontal, middle internal frontal, posterior internal frontal, paracentral, superior parietal, inferior parietal, pericallosal, and callosomarginal arteries. The ACA itself often divides into five segments, usually labeled as A1 through 5, or as proximal (A1), ascending (A2, A3) and horizontal segments.[2][3][4] A significant feature of the ACA is its robust anastomotic complex; this may account for the low rate of infarcts in this vascular distribution.[1] Notably, infarctions simultaneously affecting both cerebral hemispheres may also be present among ACA stroke cases. These are rare and characteristically occur because of clinically significant anatomical variations affecting both ACA's at any point along its course. The most recognizable patterns are the azygos, bihemispheric, and ACA with hypoplastic or absent A1 segment.[5]


Hypertension, hypercholesterolemia, diabetes mellitus, and smoking are known risk factors of cardiovascular disease frequently found in stroke patients. These underlie varied processes which ultimately result in atherosclerosis of large and small arteries. Atrial fibrillation is another significant risk factor, its frequency surpassing that of dyslipidemia among ACA stroke patients in one study.[6]

Atherosclerosis is a primary cause of ischemic stroke. One clinical imaging study of anterior cerebral artery infarction mechanisms concluded that atherosclerotic disease-related stroke mechanisms in the ACA were similar to those associated with middle cerebral artery (MCA) atherosclerosis. Atherosclerotic large vessel disease frequently results in stroke secondary to either local branch occlusion by plaque, artery-to-artery embolism, and in situ thrombosis, with the latter considered as being the most prevalent in ACA infarction.[3][7] Atherosclerosis is the most frequently reported etiology among studies in patients of Asian origin.[7][4]

Cardiac embolism from different sources, including atrial fibrillation, intracardiac thrombus, valve disease, and tumors are other significant causes of ACA infarction. Some reports suggest that cardiac emboli are more frequently the cause of ACA as compared to MCA and PCA infarcts.[6][4] A hypoplastic or absent A1 segment is thought to facilitate embolic strokes due to increased vascular flow through the unique proximal section that branches off distally into the bilateral ACA’s.[5]

Another significant mechanism of ACA stroke is arterial dissection. While rarely reported on Western populations, other sources refer to a high prevalence among Japanese patients. Those with stroke secondary to arterial dissection also tend to be younger.[4][8]

Less common mechanisms have been described, including vasculitis and coagulopathic states. Vasospasm is another cause. Reported triggers include subarachnoid hemorrhage and pituitary apoplexy. This mechanism has correlated with both unilateral and bilateral ACA infarcts. There are reported cases with unknown etiology in some case series.[1][3][7][6][8][9]

Distal vessel occlusion secondary to lost or fragmented thrombi associated with the use of intravenous thrombolysis and mechanical thrombectomy is another potential mechanism of ACA stroke. One study evaluating the frequency of ACA embolism in 105 patients undergoing mechanical thrombectomy of occlusions of the M1 segment of the MCA identified 12 new ACA emboli (11.4% of studied cases). ACA infarcts were identified on follow up imaging in 5.7% of patients. The significance of this particular mechanism of infarction lies in its potential for adverse outcomes secondary to distal occlusions after an otherwise effective recanalization of an affected vessel.[10]


Infarctions of the anterior cerebral artery and its branches are infrequent, accounting for 0.3 to 4.4% of stroke cases reported in different series. Overall, the studies show that males are affected more frequently than females. The mean patient age reported in some ACA infarct studies ranged between 59 and 74.4 years of age. One study addressed the increased prevalence of ACA infarcts among those over age 85, which was similar to findings in other stroke studies including all vascular territories. Left-sided ACA infarcts are more frequent.[1][3][7][6][11]

History and Physical

Patients presenting with an acute stroke of the anterior cerebral artery will have varied presentations depending on whether the ACA itself or any of its branches are affected. The size of the infarct will also influence the clinical presentation. Most commonly, patients will present with motor deficits characteristically involving the lower extremity contralateral to the infarct site. This finding is present in 86.3 to 90% of patients.[3][7][6] Heubner’s artery and medial striate artery infarcts are associated with contralateral face and arm weakness, resulting from damage to the anteromedial caudate nucleus, anterior limb of the internal capsule and anterior perforated substance.[4] A syndrome composed of homolateral ataxia and crural hemiparesis has been reported as another distinct phenomenon of ACA infarction attributed to damage of both the corticopontine fibers and lower limb strip.[12] There are three patient case reports of isolated unilateral axial weakness. These cases attributed the deficit to hypotonia of the paravertebral muscles secondary to strokes involving the primary motor cortex on the precentral gyrus.[13] Other motor disorders related to ACA infarction include hypometria, bradykinesia, global akinesia, loss of reciprocal coordination, parkinsonian gait, tremor, dystonia, and motor neglect.[11][14] The alien hand syndrome, in which one hand appears to be independent, and which the patient cannot control, may present in infarcts involving the corpus callosum, frontal lobe, or posterolateral parietal lobe.[15]

Isolated sensory deficits are less common. Out of 81 patients in the paper by Kang et al. with the performance of reliable sensory testing, identifiable deficits appeared in 20 (25%) subjects. When present, they always correlate with a weak extremity.[7] Conversely, none of the patients in the study by Nagaratnam et al. had any significant impairment to touch, pain or discriminative sensory modalities.[11] One case of ACA infarct in the lower limb sensory homunculus has been reported, presenting with sensory disturbances exclusively.[16]

Abulia, agitation, motor perseveration, memory impairments, emotional lability, or incontinence, as well as anosognosia, are among the neuropsychologic features associated with ACA infarction.[7] Altered consciousness and speech disorders have been identified as independent variables of ACA infarction when compared to MCA infarcts in one study where 43.1% of patients had this finding.[6] Speech disorders associated with ACA infarction include transcortical motor aphasia, with reports of it occurring following a period of muteness. Damage to the supplementary motor area correlates with these disorders. Another speech disorder found is transcortical mixed aphasia.[3][11]

Bilateral ACA infarction is rare. One study involving 48 patients with ACA infarction had only 2 cases, with a mean age at presentation of 40.[3] The most consistent findings in one study including patients with bilateral ACA infarction were frontal disinhibition signs such as enhanced glabellar tap, utilization behavior, forced grasping, snout, and other primitive reflexes. The prefrontal cortex was not always affected in these cases.[14] Paraparesis and akinetic mutism were also documented in the context of bilateral ACA stroke.[3] One case report documented a presentation consisting of right hemiballismus and involuntary left-hand masturbation.[17]

Headaches also correlate with ACA infarction, specifically in instances of arterial dissection.[4]


Once an acute ischemic stroke is suspected, the standard evaluation includes performing routine airway, breathing and circulation assessment, checking blood glucose, performing a validated stroke severity scale assessment and accurate, focused history regarding the time of symptom onset or last known well or at baseline. The National Institutes of Health Stroke Scale (NIHSS) is a standardized method for quantifiable assessment of stroke symptoms. It is the preferred scoring system, and scores range from 0 to 42. A patient with a higher score on this scale is more likely to be considered disabled; however, the definition of "disabling" depends on age, occupation, underlying life-limiting comorbidities, advance directives.

The crucial step in the evaluation of stroke patients is to obtain brain imaging to ascertain the type and characteristics of the stroke. In this regard, non-contrast CT of the head is the imaging modality of choice. Ischemic changes may classify as acute, subacute, and chronic, depending on the time in which they present after the onset of stroke. CT scan can also rule out intracranial hemorrhage.[18] If an intracranial hemorrhage is present, aneurysmal rupture should be investigated given its association with arterial vasospasm resulting in stroke.[3] Anterior cerebral artery strokes could be missed on imaging studies depending on their location or size. One case series found that 37.5% (6 of 16) of ACA infarcts evaluated by CT were identifiable only after using contrast injection or angiography. If the area of hypodensity is small and localized over a sulcus, the infarct could be overlooked.[1][13]  Noncontrast head CT should be quickly followed by CT angiography of the head and neck to expedite identification of intracranial large vessel occlusion.

The finding of a hyperdense lesion in the ACA on CT scan aid in the diagnosis of stroke in its acute phase, particularly when it may be otherwise difficult to establish. The frequency of this sign in ACA infarcts is similar to that in the territories of the middle cerebral artery and the posterior circulation.[19]

As in strokes involving other areas of the brain, magnetic resonance imaging is also of critical value in the diagnosis of ACA strokes. MRI with diffusion-weight imaging is a highly useful modality, which facilitates the demarcation of ischemic boundaries in the territory of the ACA.[3][18] MR angiography can be a helpful adjunct in the evaluation of stroke mechanisms.[7] The goal of completing head CT or MRI should be 25 min or less within patient arrival. 

The National Institutes of Neurological Disorders and Stroke (NINDS) established time frame goals in the evaluation of stroke patients: door to physician less than 10 min, door to stroke team less than 15 min, door to CT scan less than 25 min, door to drug less than 60 min.[20]

Along with accurate history and early imaging, laboratory studies including capillary blood glucose, complete blood count with platelets, chemistries, coagulation studies, hemoglobin A1c, lipid panel, and markers of hypercoagulability or inflammation can be useful in identifying the risk factors or establishing the etiology of stroke. The medication checklist is an integral part of the evaluation, specifically recent use of anticoagulants, as contraindications to thrombolytic therapy should undergo rapid assessment. Cardiac sources of embolism can be evaluated as part of the work up with EKG monitoring and echocardiogram.

Treatment / Management

Pulse oximetry can guide the use of supplemental oxygen to maintain oxygen saturation greater than 94%. Hyperoxia should be avoided as may be detrimental in stroke. Hypertension is common in an acute ischemic stroke. A low BP is uncommon and may indicate symptoms exacerbation of a previous stroke due to poor perfusion. Blood pressure of 220/120 mmHg should receive treatment. There is a consensus approach of allowing permissive hypertension up to 220/120 mmHg for patients that are not candidates for thrombolysis.[21]

However, for a patient that is a potential candidate for alteplase, attempt to control BP should be made immediately as goal BP for initiation of IV alteplase is 185/110 mmHg. Usually, titratable short-acting intravenous hypotensive agents are recommended to avoid dropping the BP too much once the patient is at goal. Hypotensive agents that can be options include labetalol, nicardipine, clevidipine, hydralazine, enalaprilat.[21]

For the patients that present within the therapeutic window, the decision to treat with intravenous recombinant tissue plasminogen (less than 4.5 hours from symptom onset) or endovascular treatment with mechanical thrombectomy should be made. Initiation of IV alteplase treatment in the 3 to 4.5-hour window is the current recommendation for patients less than 80 years of age, no history of both diabetes mellitus and prior stroke, use of anticoagulants, and NIHSS score of less than 25.  Only patients with disabling symptoms are considered eligible for thrombolytic treatment. Eligibility and absolute and relative contraindications should undergo rapid assessment. Randomized controlled trials have shown that intravenous administration of recombinant tissue plasminogen activator (alteplase) decrease functional disability with an absolute reduction risk of 7%-13% relative to placebo.[21]

Unfortunately, over half of patients arrive after this time window has closed and are not eligible for thrombolysis. Treatment delays may result from failure to ascribe a patient's symptoms to stroke, and furthermore, the risk of harm increases with time elapsed from symptom onset.[21] This situation could be of particular concern in ACA strokes, given their sometimes atypical presentation.

Endovascular treatment with mechanical thrombectomy (MT) is another proven treatment modality in the management of patients with acute stroke suffering a large vessel occlusion, although treatment efficacy is highly time-dependent.  The procedure is available in tertiary hospitals as requires stroke team with the expertise to use timely imaging and intervention. One study evaluating MT in ACA stroke patients found that while recanalization rates were high, the outcomes were otherwise unsatisfactory. The latter was attributed to larger infarct volumes and longer times to recanalization.[22][23]

New guidelines recommend that in patients with acute ischemic stroke within 6 to 24 hours from last known well and who have large vessel occlusion in anterior circulation, obtaining CTP, DW-MRI, or MRI perfusion is recommended to aid in selection for mechanical thrombectomy. However, this is only with the strict application of imaging or other eligibility criteria from RCTs showing benefit are in selecting patients for MT. The DAWN trial used clinical imaging mismatch (imaging from CTP or DW-MRI and NIHSS scoring) as criteria to select patients with anterior circulation LVO for MT between 6 to 24 hours from last known well. The trial demonstrated an overall functional benefit at 90 days in the treatment group (mRS score 0 to 2, 49% versus 13%, adjusted difference 33%, 95% CI, 21 to 44; a probability of superiority greater than 0.999). The DEFUSE 3 trial used perfusion core mismatch and maximum core size as criteria in selecting the patient for MT with LVO in anterior circulation 6 to 16 hours from last time seen normal. This trial also showed outcome benefit at 90 days in the treated group (mRS score 0 to 2, 44.6% vs. 16.7%, RR 2.67, 95% CI, 1.60 to 4.48, p greater than 0.0001). DAWN and DEFUSE 3 are the only trials showing a benefit of mechanical thrombectomy greater than 6 hours from symptoms onset. Only criteria from these trials should be viable for patient selection who might benefit from MT.[21] One should be aware that most of the patients involved in DAWN and DEFUSE 3 trials had middle cerebral artery occlusions. 

Beyond the acute management of stroke, the use of antihypertensives, dual antiplatelet therapy, anticoagulants, carotid endarterectomy should be used to prevent recurrent events. Antiplatelet therapy or anticoagulants are not recommended within 24h after alteplase administration. Aspirin is not a recommendation as a substitute for other interventions for acute stroke. Administration of glycoprotein IIb/IIIa receptor inhibitor is not recommended, and a recent Cochrane review showed that these agents correlated with a high risk of intracranial hemorrhage. Dual antiplatelet therapy (aspirin and clopidogrel) are recommended to start within 24 hours for 21 days in patients with minor stroke for early secondary stroke prevention. The CHANCE trial showed that the primary outcome of recurrent stroke at 90 days favored dual antiplatelet therapy over Aspirin alone (HR 0.68; 95% CI, 0.57 to 0.81, p<0.0001). Ticagrelor over aspirin in acute stroke treatment is not recommended. According to SOCRATES trial with the primary outcome of time to the composite endpoint of stroke, MI or death up to 90 days, ticagrelor was not found to be superior to aspirin (HR 0.89, 95% CI, 0.78-1.01; p=0.07). However, ticagrelor is a reasonable alternative in patients with contraindication to aspirin. The efficacy of tirofiban and eptifibatide is currently unknown.[21][20]

Optimization of risk factors is essential for secondary prevention of stroke in order to improve outcomes from the principal event.[21]

Differential Diagnosis

The differential of stroke in general, as well as one that involves the anterior cerebral artery, include metabolic, hypoglycemia, infectious (fever, sepsis), cardiovascular (e.g., syncope), migraines, tumors, abscess, neuromuscular and varied neuropsychiatric conditions.  Clinicians should adopt strategies to reduce the likelihood of missing the diagnosis in a narrow time window in stroke cases given the time-sensitive nature of its acute treatment. A suggested approach includes suspecting stroke in the context of acute-onset neurological symptoms, increased clinician awareness of uncommon stroke syndromes and the performance of a systematic neurological exam to better determine the nature of the problem.[24][15]


In-hospital mortality of anterior cerebral artery stroke patients can range between 0 and 7.8%. This is lower than the 17.3% found for MCA stroke patients in one of the studies evaluating ACA stroke patients. Case series show a favorable prognosis for patients, with up to 68% of patients in one series had a modified Rankin scale score of 2 or less at discharge.[3][4][6]

With regards to specific deficits, studies suggest that aphasias from ACA infarcts tend to improve within a short period, in contrast with those resulting from MCA territory lesions. Infarct size has been found to show a poor correlation with functional recovery.[7][11]

One case of akinetic mutism reversal with L-dopa therapy has been reported.[25]

Generally, patients with major neurological deficits have a high risk of poor outcome, regardless of whether or not alteplase is administered.


Patients with large infarctions are at high risk of developing brain edema. Early transfer of patients at risk to an institution with neurosurgical expertise should be considered.[21]

Recurrent seizure after stroke should receive therapy with anti-seizure medications; however prophylactic use of these drugs are not recommended.[21]

Complications related to IV alteplase administration are intracranial hemorrhage and angioedema. If the patient develops a headache, nausea, vomiting, new or worsening neurological deficits, cerebral hemorrhage should be suspected; IV alteplase should be discontinued immediately, and stat head CT scan obtained. In case of signs or symptoms of angioedema, maintaining airway patency should be the primary goal. In addition to alteplase discontinuation, IV methylprednisolone and diphenhydramine should be administered. Epinephrine and icatibant, a selective bradykinin B2 receptor antagonist, and plasma-derived C1 esterase inhibitor can be a therapeutic consideration.[21]

Postoperative and Rehabilitation Care

The recommendation is for early rehabilitation in environments with organized, interprofessional stroke care to improve outcomes for stroke patients.[21]

Enhancing Healthcare Team Outcomes

A good outcome from acute ischemic stroke is more likely with early recognition of symptoms of stroke. Previous studies showed that public education of signs and symptoms of stroke improves stroke recognition, however, data indicates that public knowledge remains poor. Stroke education should target patients, family members, caregivers, empowering them to use the emergency medical system as prehospital delays and door to CT scan are shorter if patients are transported by ambulance. Also, advanced notification of stroke teams by EMS shortens the time to initial evaluation by physicians and increases the likelihood of alteplase use. The California Acute Stroke Pilot Registry (CASPR) indicates that if patients arrived shortly after onset, the rate of fibrinolytic treatment within 3 hours increased from 4.3% to 28.6%.[21]

EMS systems play a critical role in the optimization of stroke care by using prehospital stroke assessment tools. Once the stroke is suspected it becomes a high priority dispatch and transport to the highest level of care in the shortest time possible is initiated immediately. A focused, accurate history including time of symptom onset or last known well, checking blood glucose levels, obtaining intravenous access, obtaining blood samples is obtainable by EMS in the field or while transporting the patient. Established, specific time frames exist for the EMS to follow and all efforts should be made to avoid unnecessary delays.  Notification of the receiving institution before patient arrival is critical for rapid diagnosis and early management. Patients should have transportation to the closest available PCS (Primary Stroke Center) or CSC (Comprehensive Stroke Center) or the most appropriate institution that provides emergency stroke care. A stroke team should be ready to assess the patient in the ED once the patient arrives. The use of standardized stroke care order sets is recommended to improve management.[21][20]

In hospitals without expertise in imaging interpretation, teleradiology systems implemented within a telestroke network are useful in supporting a rapid interpretation of the images in a timely manner for alteplase administration decision making. Administration of alteplase guided by telestroke consultation may be as safe and beneficial as that of stroke centers. Telestroke systems are also useful for triaging patients who may be eligible for interfacility transfer for consideration of mechanical thrombectomy.[21]

Continuous quality improvement processes implemented by each major element of the stroke system of care can be useful in improving patient care and outcome.[21][20]

  • Image 8474 Not availableImage 8474 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anterior Cerebral Artery Stroke - Questions

Take a quiz of the questions on this article.

Take Quiz
A 62-year-old male presents after experiencing sudden-onset right leg weakness. On exam, the patient is inattentive, with right hemiparesis. Weakness is worse in the right lower limb as compared to the upper. Grasp reflex is elicited. Speech is preserved. On which of the following arterial territories would one anticipate finding an infarct?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A patient develops acute left hemiplegia involving the face more than the arm and leg. The suck and grasp reflexes and speech are preserved. Which cerebral vessel is involved?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
Which neurologic deficit is associated with infarct of the anterior cerebral artery?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
An 82-year-old man presented with symptoms of right leg weakness and word-finding problems. According to his daughter, the symptoms started about four hours ago. Past medical history includes hypertension, dyslipidemia, diabetes mellitus, coronary artery disease, chronic congestive heart failure, and previous stroke two years ago with complete recovery. On arrival, his blood pressure is 167/98 mmHg, pulse rate 89 bpm with a regular rhythm, and respiratory rate 16 breaths per minute. No carotid bruits are noted. On neurological examination, he has slurred speech and right leg drift. Plasma glucose is 145 mg/dL, complete blood count, a metabolic panel, and coagulation studies are normal, hemoglobin A1c is 7.0 %, and serum LDL cholesterol level is 65 mg/dL. Head CT without contrast is negative for intracranial bleed. His medications include aspirin, lisinopril, metoprolol, furosemide, insulin, and atorvastatin. Which of the following is the next best step in managing this patient?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 65-year-old female is evaluated in the emergency department. She reports that in the morning, she was not able to get out of bed because she could not move her right leg. She was completely fine when she went to bed the night prior. She has a history of hypertension, hypercholesterolemia, diabetes mellitus, and chronic kidney disease stage 3. On physical examination, she is awake and interactive. Blood pressure is 189/105 mmHg, pulse rate 110 bpm and irregular, respiration rate is 14 breaths per minute. No carotid bruits are heard. On encounter, she reports slight improvement in her leg weakness. On neurologic examination, her speech is normal, there is no facial droop or arm drift noted, but the strength in the right lower extremity is 3/5, sensation intact. Point of care glucose is 205 mg/dl, and head CT is negative for intracranial bleed. An electrocardiogram shows atrial fibrillation. Medications include glipizide, simvastatin, hydrochlorothiazide, and losartan. Which of the following is the best next step in management?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 44-year-old male has become mute and immobile abruptly. Muscle weakness, worse in the lower extremities, is observed on an exam. The patient is incontinent of urine. Witnesses note that he had complained of severe, sudden-onset headaches before the findings appeared. CT of the brain shows an area of infarction involving both frontal lobes. Which of the following stroke mechanisms could explain these findings?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Anterior Cerebral Artery Stroke - References


Kubis N,Guichard JP,Woimant F, Isolated anterior cerebral artery infarcts: A series of 16 patients. Cerebrovascular diseases (Basel, Switzerland). 1999 May-Jun;     [PubMed]
Chandra A,Li WA,Stone CR,Geng X,Ding Y, The cerebral circulation and cerebrovascular disease I: Anatomy. Brain circulation. 2017 Apr-Jun;     [PubMed]
Kumral E,Bayulkem G,Evyapan D,Yunten N, Spectrum of anterior cerebral artery territory infarction: clinical and MRI findings. European journal of neurology. 2002 Nov;     [PubMed]
Toyoda K, Anterior cerebral artery and Heubner's artery territory infarction. Frontiers of neurology and neuroscience. 2012;     [PubMed]
Krishnan M,Kumar S,Ali S,Iyer RS, Sudden bilateral anterior cerebral infarction: unusual stroke associated with unusual vascular anomalies. Postgraduate medical journal. 2013 Feb;     [PubMed]
Arboix A,García-Eroles L,Sellarés N,Raga A,Oliveres M,Massons J, Infarction in the territory of the anterior cerebral artery: clinical study of 51 patients. BMC neurology. 2009 Jul 9;     [PubMed]
Kang SY,Kim JS, Anterior cerebral artery infarction: stroke mechanism and clinical-imaging study in 100 patients. Neurology. 2008 Jun 10;     [PubMed]
Hensler J,Jensen-Kondering U,Ulmer S,Jansen O, Spontaneous dissections of the anterior cerebral artery: a meta-analysis of the literature and three recent cases. Neuroradiology. 2016 Oct;     [PubMed]
Mohindra S,Kovai P,Chhabra R, Fatal Bilateral ACA Territory Infarcts after Pituitary Apoplexy: A Case Report and Literature Review. Skull base : official journal of North American Skull Base Society ... [et al.]. 2010 Jul;     [PubMed]
Kurre W,Vorlaender K,Aguilar-Pérez M,Schmid E,Bäzner H,Henkes H, Frequency and relevance of anterior cerebral artery embolism caused by mechanical thrombectomy of middle cerebral artery occlusion. AJNR. American journal of neuroradiology. 2013 Aug;     [PubMed]
Nagaratnam N,Davies D,Chen E, Clinical effects of anterior cerebral artery infarction. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 1998 Nov-Dec;     [PubMed]
Bogousslavsky J,Martin R,Moulin T, Homolateral ataxia and crural paresis: a syndrome of anterior cerebral artery territory infarction. Journal of neurology, neurosurgery, and psychiatry. 1992 Dec;     [PubMed]
Honig A,Eliahou R,Auriel E, Confined anterior cerebral artery infarction manifesting as isolated unilateral axial weakness. Journal of the neurological sciences. 2017 Feb 15;     [PubMed]
Kobayashi S,Maki T,Kunimoto M, Clinical symptoms of bilateral anterior cerebral artery territory infarction. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2011 Feb;     [PubMed]
Edlow JA,Selim MH, Atypical presentations of acute cerebrovascular syndromes. The Lancet. Neurology. 2011 Jun;     [PubMed]
Nishida Y,Irioka T,Sekiguchi T,Mizusawa H, Pure sensory infarct in the territories of anterior cerebral artery. Neurology. 2010 Jul 20;     [PubMed]
Bejot Y,Caillier M,Osseby GV,Didi R,Ben Salem D,Moreau T,Giroud M, Involuntary masturbation and hemiballismus after bilateral anterior cerebral artery infarction. Clinical neurology and neurosurgery. 2008 Feb;     [PubMed]
Birenbaum D,Bancroft LW,Felsberg GJ, Imaging in acute stroke. The western journal of emergency medicine. 2011 Feb;     [PubMed]
Jensen UR,Weiss M,Zimmermann P,Jansen O,Riedel C, The hyperdense anterior cerebral artery sign (HACAS) as a computed tomography marker for acute ischemia in the anterior cerebral artery territory. Cerebrovascular diseases (Basel, Switzerland). 2010;     [PubMed]
Musuka TD,Wilton SB,Traboulsi M,Hill MD, Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2015 Sep 8;     [PubMed]
Uno J,Kameda K,Otsuji R,Ren N,Nagaoka S,Kazushi M,Ikai Y,Gi H, Mechanical Thrombectomy for Acute Anterior Cerebral Artery Occlusion. World neurosurgery. 2018 Dec;     [PubMed]
Allen CM, Differential diagnosis of acute stroke: a review. Journal of the Royal Society of Medicine. 1984 Oct;     [PubMed]
Deborah G,Ong E,Nighoghossian N, Akinetic mutism reversibility after L-dopa therapy in unilateral left anterior cerebral artery infarction. Neurocase. 2017 Apr;     [PubMed]
Jauch EC,Saver JL,Adams HP Jr,Bruno A,Connors JJ,Demaerschalk BM,Khatri P,McMullan PW Jr,Qureshi AI,Rosenfield K,Scott PA,Summers DR,Wang DZ,Wintermark M,Yonas H, Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013 Mar     [PubMed]
Powers WJ,Rabinstein AA,Ackerson T,Adeoye OM,Bambakidis NC,Becker K,Biller J,Brown M,Demaerschalk BM,Hoh B,Jauch EC,Kidwell CS,Leslie-Mazwi TM,Ovbiagele B,Scott PA,Sheth KN,Southerland AM,Summers DV,Tirschwell DL, 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018 Mar     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry Cert Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry Cert Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry Cert Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry Cert Medicine. When it is time for the Surgery-Podiatry Cert Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry Cert Medicine.