Physiology, Frank Starling Law


Article Author:
Anthony Delicce
Hajira Basit


Article Editor:
Amgad Makaryus


Editors In Chief:
Donald Kushner
Annabelle Dookie


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
5/5/2019 1:01:41 PM

Introduction

The Frank-Starling relationship is based on the link between the initial length of myocardial fibers and the force generated by contraction.  There is a predictable relationship between the length between sarcomeres and the tension of the muscle fibers. There is an optimal length between sarcomeres at which the tension in the muscle fiber is greatest, resulting in the greatest force of contraction. If sarcomeres are closer together or further apart compared to this optimal length, there will be a decrease in the tension and strength of contraction.

The greater the ventricular diastolic volume, the more the myocardial fibers are stretched during diastole. Within a normal physiologic range, the more the myocardial fibers are stretched, the greater the tension in the muscle fibers, and the greater force of contraction of the ventricle when stimulated. The Frank-Starling relationship is the observation that ventricular output increases as preload (end-diastolic pressure) increase.[1][2][3]

Mechanism

The left ventricular performance (Frank-Starling) curves relate preload, measured as left ventricular end-diastolic volume (EDV) or pressure, to cardiac performance, measured as ventricular stroke volume or cardiac output. On the curve of a normally functioning heart, cardiac performance increases continuously as preload increases. During states of increased left ventricular contractility, for example, due to norepinephrine infusion, there is greater cardiac performance for a given preload. This is represented graphically as an upward shift of the normal curve. Conversely, during states of decreased left ventricular contractility associated with systolic heart failure, there is less cardiac performance for a given preload as compared to the normal curve.  This is represented by a downward shift of the normal curve. Decreased contractility also can result from a loss of myocardium as with myocardial infarction, beta-blockers (acutely), non-dihydropyridine Ca++ channel blockers, and dilated cardiomyopathy.[4][5][6]

Changes in afterload, which is the force of resistance that the ventricle must overcome to empty contents at the beginning of systole, will also shift the Frank-Starling curve. A decrease in afterload will cause an upward shift of the ventricular performance curve in a similar fashion to an increase in inotropy. Conversely, an increase in afterload will cause a downward shift of the curve in a similar fashion to a decrease in inotropy.  

Increase in catecholamines, such as norepinephrine, during exercise will result in an upward shift of the Frank-Starling curve. Catecholamines achieve this increase by binding to a myocyte beta1-adrenergic receptor, a g-protein coupled receptor, ultimately resulting in increased Ca++ channel release from the sarcoplasmic reticulum which enhances the force of contraction.[7][8]

Clinical Significance

The Frank-Starling mechanism plays a role in the compensation of systolic heart failure, buffering the fall in cardiac output to help preserve sufficient blood pressure to perfuse the vital organs.  Heart failure caused by the impaired contractile function of the left ventricle causes a downward shift of the left ventricular performance curve.  At any given preload, the stroke volume will be decreased as compared to normal.  This reduced stroke volume leads to incomplete left ventricular emptying. Consequently, the volume of blood that accumulates in the left ventricle during diastole is greater than normal. The amplified residual volume increases the stretch of the myocardial fibers and induces a greater stroke volume with the next contraction, via the Frank-Starling mechanism. This allows for better emptying of the enlarged left ventricle and preserves cardiac output.[9]

The benefits of the Frank Starling mechanism in the compensation of systolic heart failure is limited. In severe heart failure with greater malfunction of cardiac contractility, the ventricular performance curve may be nearly flat at higher diastolic volumes, reducing the increased cardiac output with increases in chamber filling. In this circumstance, a severe elevation at the EDV and left ventricular EDP may result in pulmonary congestion.

The Frank-Starling mechanism also plays a compensatory role in patients with dilated cardiomyopathy. In dilated cardiomyopathy, there is commonly dilation of both the right and left ventricles with decreased contractile function. As impaired myocyte contractility results in depression of ventricular stroke volume and cardiac output, the Frank-Starling mechanism has compensatory effects. As the elevated ventricular diastolic volume increases the stretch on the myocardial fibers, there will be a subsequent increase in stroke volume.  Along with the Frank-Starling mechanism, neurohormonal activation mediated by the sympathetic nervous system also compensates for dilated cardiomyopathy by increasing heart rate and contractility, helping to buffer the decreased cardiac output. These compensatory mechanisms may lead to a lack of symptoms during the early stages of ventricular dysfunction. With progressive myocyte degeneration and volume overload, clinical symptoms of systolic heart failure will develop. 

In patients with impaired myocardial systolic failure, inotropic drugs are used to increase the force of ventricular contraction. Pharmacologic inotropic agents include cardiac glycosides, such as digitalis; sympathomimetic amines such as dopamine and epinephrine; and phosphodiesterase-3 inhibitors, such as milrinone.  They all work through different mechanisms to enhance cardiac contraction by increasing the intracellular calcium concentration, enhancing actin and myosin interaction. This will have the hemodynamic effect of shifting a depressed ventricular performance (Frank-Starling) curve in an upward direction toward normal so that at a given preload (left ventricular EDP), the stroke volume and cardiac are increased.

With progressive loss of ventricular contractility, increased preload (pressure) in the left ventricle will surpass the hydrostatic forces of the pulmonary venous system, resulting in pulmonary congestion. In a patient suffering from systolic heart failure with reduced ejection fraction and resultant pulmonary congestion, treatment with a diuretic, such as furosemide or hydrochlorothiazide, or a pure venous vasodilator, such as nitrates, reduces the preload without much change in stroke volume. This is because the Frank-Starling curve is almost horizontal at higher levels of preload in a patient whose curve is shifted downward due to systolic contractile dysfunction. However, excessive diuresis or venous vasodilation can result in an unwanted fall in stroke volume, resulting in hypotension. 

Arteriolar vasodilation therapy, like hydralazine, also has value when treating systolic heart failure with pulmonary congestion. Arteriolar vasodilators result in a decrease in afterload, allowing for an increase in stroke volume. The improved left ventricular emptying results in a decreased preload and improvement of pulmonary symptoms. There is the potential added benefit of combining treatment with a vasodilator and a positive inotropic agent, allowing for a larger increase in stroke volume than would be seen with monotherapy. Even with combination therapy with a vasodilator and inotropic agent, the Frank-Starling curve will not improve to the performance level of a normal ventricle.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Frank Starling Law - Questions

Take a quiz of the questions on this article.

Take Quiz
Frank-Starling law involves:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What will happen to the Frank-Starling curve in a patient with a massive myocardial infarction?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient in the CICU with congestive heart failure with reduced ejection fraction experiences cardiogenic shock. A drug is started which affects normal cardiac physiology. Which of the following best describes the effect of this medication on the Frank-Starling curve?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 35-year-old man experiences a gunshot wound to the abdomen. His BUN is 40 and creatinine is 1.8 mg/dL. The patient has a normal capillary refill, and extremities are warm to touch. Which of the following best describes how this patient's Frank-Starling curve affected?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old male comes to your cardiology clinic after an episode of syncope. On auscultation, a harsh systolic crescendo-decrescendo murmur is heard, best at the right upper sternal border. Which of the following alterations in the Frank-Starling curve is most likely expected in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Frank Starling Law - References

References

Han JC,Pham T,Taberner AJ,Loiselle DS,Tran K, Solving a century-old conundrum underlying cardiac force-length relations. American journal of physiology. Heart and circulatory physiology. 2019 Apr 1;     [PubMed]
Kuhtz-Buschbeck JP,Drake-Holland A,Noble MIM,Lohff B,Schaefer J, Rediscovery of Otto Frank's contribution to science. Journal of molecular and cellular cardiology. 2018 Jun;     [PubMed]
Chaui-Berlinck JG,Monteiro LHA, Frank-Starling mechanism and short-term adjustment of cardiac flow. The Journal of experimental biology. 2017 Dec 1;     [PubMed]
Ochsner G,Wilhelm MJ,Amacher R,Petrou A,Cesarovic N,Staufert S,Röhrnbauer B,Maisano F,Hierold C,Meboldt M,Schmid Daners M, In Vivo Evaluation of Physiologic Control Algorithms for Left Ventricular Assist Devices Based on Left Ventricular Volume or Pressure. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2017 Sep/Oct;     [PubMed]
Sequeira V,van der Velden J, The Frank-Starling Law: a jigsaw of titin proportions. Biophysical reviews. 2017 Jun;     [PubMed]
Chen-Izu Y,Izu LT, Mechano-chemo-transduction in cardiac myocytes. The Journal of physiology. 2017 Jun 15;     [PubMed]
Toepfer CN,West TG,Ferenczi MA, Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion. The Journal of physiology. 2016 Sep 15;     [PubMed]
Li KL,Ghashghaee NB,Solaro RJ,Dong W, Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Archives of biochemistry and biophysics. 2016 Jul 1;     [PubMed]
Ait Mou Y,Bollensdorff C,Cazorla O,Magdi Y,de Tombe PP, Exploring cardiac biophysical properties. Global cardiology science     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry APMLE Part 3. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry APMLE Part 3, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry APMLE Part 3, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry APMLE Part 3. When it is time for the Surgery-Podiatry APMLE Part 3 board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry APMLE Part 3.