Contrast-Induced Nephropathy


Article Author:
Kalgi Modi


Article Editor:
Mohit Gupta


Editors In Chief:
Donald Kushner
Annabelle Dookie


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
2/15/2019 4:11:48 PM

Introduction

Iodine contrast medium is an essential in invasive and interventional cardiac procedures. Because of increasing number of coronary angiography and coronary interventional procedures, the increasing use of contrast media, and the increasing number of invasive cardiac procedures being performed in high-risk patients with chronic kidney disease, diabetes mellitus, hypertension, and kidney failure due to contrast-induced nephropathy remains a growing concern. A sudden change in kidney function is a common complication of coronary angiography, and percutaneous coronary intervention, primarily because of contrast-induced acute kidney injury or contrast-induced nephropathy.[1][2][3]

Etiology

The most common cause of contrast-induced nephropathy is pre-existing chronic kidney disease. About 8% of patient with estimated glomerular filtration rate (eGFR) between 45 ml/min/1.73m2 to 60 ml/min/1.73m2, 13% of the patients with eGFR between 30 ml/min/1.73m2 to 45 ml/min/1.73m2, and 27% of patients with glomerular filtration rate (GFR) less than 30 ml/min/1.73m2 develop contrast-induced nephropathy following contrast exposure. [4][5][6]

Other clinical factors include advanced age, diabetes, peripheral heart failure, females, peripheral vascular disease, hypertension and a left ventricular ejection fraction (LVEF) of less 40%. Precipitating factors include acute coronary syndrome, hypotension, volume depletion, concomitant nephrotoxic medications, and anemia. There are several risk predictor model available to predict contrast-induced nephropathy risk before the procedure and use of preventive measures. Gurm and colleagues used a cohort of over 68,000 percutaneous coronary intervention procedures to develop an online calculator risk predictor (http://bmc2.org/calculators/cin). 

Similarly, the Roxana Mehran score predictor applies the following ten variables:

  1. Age (4 points if older than 75 years old)
  2. Anemia (3 points)
  3. Use of an intra-aortic balloon pump (5 points)
  4. eGFR 60 to 40 (2 points)
  5. eGFR 40 to 20 (4 points)
  6. eGFR less than 20 (6 points)
  7. Hypotension (5 points, if systolic BP less than 80 mmHg for at least one hour requiring inotropic support)
  8. Contrast media volume (1 point per 100 ml)
  9. Congestive heart failure (5 points)
  10. Diabetes (3 points).

A risk score of less than 6 carries a risk of 7.5% to score more than 16 carries up to 57% risk.

Epidemiology

The prevalence of diabetes and chronic kidney disease are rising. Both of these are risk factors for acute kidney injury after cardiac catheterization and percutaneous coronary interventions. Based on current definitions the incidence of contrast-induced nephropathy ranges from 2% to 30%. Most cases are completely reversible within two to four weeks. The need for renal replacement therapy is rare at a rate of 1% to 4%, and of these, less than 50% require long-term renal replacement therapy. The incidence of contrast-induced nephropathy is calculated to be more than 2% in the general population. However, in high-risk groups with risk factors for kidney disease, the incidence is as high as more than 20% to 30%. It is reported that there is a lower risk of contrast-induced nephropathy when low osmolar contrast media is used.[7]

Pathophysiology

The pathophysiology of contrast-induced nephropathy remains unclear. The proposed theory is a combination of vasoconstriction, ischemia, hypoxia, and direct toxic effect on renal tubular cells. The hemodynamic alterations and medications can exacerbate the possibility of contrast-induced nephropathy. The risk of contrast-induced kidney injury is much higher with the arterial administration of contrast compared with venous administration of contrast. Metformin can cause lactic acidosis in the setting of kidney dysfunction and acute kidney injury. The FDA recommends holding metformin on the day of contrast exposure and 48 hours after the procedure. Another cause is catheter-induced aeroembolism to the renal microvasculature. Laboratory abnormalities may include eosinophilia and eosinophilia in an acute kidney injury as a result of cholesterol atheroembolism.[6]

Histopathology

When kidney biopsies are done, there is visible evidence of direct damage to the renal tubular epithelial cells by the contrast dye. One may note the presence of interstitial inflammation, cell vacuolization, and patch necrosis. This damage to the cells is usually evident within the first 7-10 days of the injury.

History and Physical

Contrast-induced nephropathy was first reported by Bartel et al. in the 1950s and was related to a fatal acute renal injury that happened following intravenous pyelography in a patient with myeloma kidney. A transient rise in creatine occurs in 15% of patients undergoing invasive procedures. Even mild contrast-induced nephropathy is associated with longer hospital stays, increased cost, and higher short-term and long-term mortality. The reported incidence varies between 7% and 11% depending on the definition applied, study population, and setting. An average additional cost of more than $10,000 is associated with a contrast-induced nephropathy-related hospital stay. Contrast-induced acute kidney injury is diagnosed by following up on creatinine levels two to three days after contrast exposure.

Evaluation

Contrast-induced nephropathy is defined as a rise in serum creatinine of at least 0.5 mg/dL or 25% increase from baseline within 48 to 72 hours after contrast exposure. The Kidney Disease Improving Global Outcome (KDIGO) definition is different, with stage I being rapid rise of creatinine to greater than 0.3 mg/dL within 48 hours or relative rise of 50% or more from baseline in 7 days or less or a reduction in urine output to less than 0.5 ml/kg/hr for 6 to 12 hours. This severity is further staged based on creatinine levels, urine output or need for renal replacement therapy. [8]

Treatment / Management

The most common strategy to reduce the risk of contrast-induced neuropathy must be considered before the contrast exposure. Periprocedural hydration in chronic kidney disease patients by initiating intravenous (IV) fluid with 0.9% normal saline infusion at a rate of 1 ml/kg/hr for six to 12 hours before the procedure and continuing after the procedure. Some literature supports a sliding scale IV hydration protocol based on left ventricular end diastolic pressure. 

In a clinical trial, there was no consistent benefit to justify the routine administration of sodium bicarbonate in patients undergoing cardiac catheterization. Similarly, the Acetylcysteine for Contrast-Induced Nephropathy trial found no difference between acetylcysteine and placebo in the prevention of contrast-induced neuropathy or need for dialysis. It is reasonable to pretreat patients with high-intensity statin before contrast use. Fenoldopam, a dopamine receptor agonist, did not have any benefit in clinical trials. Ascorbic acid 1 gm to 3 gm for one to 3 days periprocedural has been shown to reduce contrast-induced neuropathy by 33%. RenalGuard System has shown promise in high-risk patients. The benefit of hemofiltration has been demonstrated in an isolated trial. Intraprocedure, one can use smaller guide catheter, minimize contrast use, avoid ventriculogram, biplane coronary angiography, low osmolar, or iso-osmolar nonionic contrast agent, and maximum allowable contrast dose to be three times the estimated GFR.[9][10][11]

Differential Diagnosis

  • Acute renal failure
  • Embolic renal disease
  • Interstitial nephritis
  • Acute tubular necrosis
  • Renal artery stenosis

Staging

Several scoring systems have been developed to predict contrast-induced kidney injury and the risk factors include the following:

  • Use of an intra-aortic balloon pump
  • CHF
  • Hypotension
  • Elevated creatinine (More than 1.5)
  • Age greater than 75
  • Diabetes
  • Anemia
  • Use of contrast volume more than 100 ml

Pearls and Other Issues

Approximately 42% of deaths among patients with end-stage renal disease (ESRD) are due to a cardiovascular event. Routine dialysis is not the recommendation in a patient with end-stage renal disease undergoing cardiac catheterization. They can be maintained on their routine dialysis schedule. 

It is important to recognize that precaution is needed in a patient with transplanted kidney undergoing cardiac catheterization. Instrumentation of the vessel that supplies the transplanted kidney should be avoided. Additionally, contrast should be used judiciously even with normal GFR, avoid indwelling arterial or venous catheters and use of vascular closure device due to the risk of infection.

Assessment of acute kidney injury with serum creatinine has poor sensitivity and specificity. Several new markers have been identified with most of the current interest focused on cystatin C, neutrophil gelatinase-associated lipocalin, interleukin 18, and kidney injury molecule 1.

Enhancing Healthcare Team Outcomes

Because contrast-induced renal injury leads to high morbidity, prolonged admission and increased health care costs, the goal is today is focussed on prevention. Besides physicians, both the nurse and pharmacist need to be aware of the patient's medical history and concomitant use of other medications. A detailed history of risk factors like diabetes, heart failure and hypertension are critical. Any patient prescribed an intervention procedure that uses contrast dye must be fully assessed for a history of diabetes and renal function. These individuals may be better served with another imaging test that does not require the use of contrast. If there is no choice, then the patient must be educated about the possibility of kidney injury and the need for dialysis. The pharmacist should ensure that all nephrotoxic drugs are discontinued prior to the test. The nurse should make sure that the patient is well hydrated both before and after the test. The drug metformin should be withheld for 48 hours and restarted if the renal function is normal. Only through proper communication and monitoring can the frequency of contrast-induced renal injury be lowered. [12][13][14](Level V)

Outcomes

Contrast-induced kidney injury is in most cases not a permanent injury and most patients will see a recovery of renal function within 10-14 days. However, in patients with underlying renal disease, diabetes or hypertension, about 20-30% of patients will have residual impairment of renal function. Dialysis may be required in less than 1-3% of non-diabetic patients, but in diabetics, dialysis may be required in anywhere from 10-15% of cases. Of those who do required dialysis, at least 20% may end up on permanent dialysis. The presence of persistent kidney damage after use of contrast highlights the importance of hydration and avoidance of contrast when other imaging modalities are available. [5][15][16](Level V)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Contrast-Induced Nephropathy - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is the most important measure to take in the case of a geriatric female with a history of hypertension and diabetes mellitus who is hospitalized for suspected ischemic colitis and has just undergone an abdominal CT scan with contrast?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Contrast-induced nephropathy will most likely occur in which patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Risk factors for contrast-induced nephropathy do not include which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old diabetic has a chest x-ray preoperatively for hernia repair but is found to have a lung nodule. CT scan of the chest with contrast is done. Before the CT his BUN was 28 mg/dL and creatine 1.9 mg/dL. The patient develops decreased urine output, dyspnea, and pedal edema 4 days later. His BUN increased to 62 mg/dL and creatinine 4.6 mg/dL. What is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What are the factors related to the pathogenesis of contrast-induced nephropathy?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 78-year-old man is admitted with unstable angina. He has a history of coronary artery bypass graft, type 2 diabetes mellitus, and chronic renal disease with baseline serum creatinine concentration 1.7 mg/dL and estimated glomerular function [eGFR] 42 mL/min per 1.73m2. He undergoes coronary angiography, bypass graft evaluation, and percutaneous coronary intervention with a drug eluting stent to the 90% stenosis of the saphenous vein graft to right coronary artery. He receives a total of 400 mL contrast. What is the best treatment strategy to prevent contrast-induced nephropathy (CIN)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements about contrast agents is false?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the definition of contrast-induced nephropathy?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Contrast-Induced Nephropathy - References

References

Elserafy AS,Okasha N,Hegazy T, Prevention of contrast induced nephropathy by ischemic preconditioning in patients undergoing percutaneous coronary angiography. The Egyptian heart journal : (EHJ) : official bulletin of the Egyptian Society of Cardiology. 2018 Jun     [PubMed]
Oweis AO,Alshelleh SA,Daoud AK,Smadi MM,Alzoubi KH, Inflammatory milieu in contrast-induced nephropathy: a prospective single-center study. International journal of nephrology and renovascular disease. 2018     [PubMed]
Ul Abideen Z,Mahmud SN,Salih M,Arif A,Ali F,Rasheed A,Zafran M, Contrast-induced Acute Kidney Injury in Patients with Liver Cirrhosis: A Retrospective Analysis. Cureus. 2018 May 29     [PubMed]
Patschan D,Müller GA, [Acute Kidney Injury, AKI - Update 2018]. Deutsche medizinische Wochenschrift (1946). 2018 Aug     [PubMed]
McDonald JS,McDonald RJ,Tran CL,Kolbe AB,Williamson EE,Kallmes DF, Postcontrast Acute Kidney Injury in Pediatric Patients: A Cohort Study. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2018 Jul 21     [PubMed]
Hossain MA,Costanzo E,Cosentino J,Patel C,Qaisar H,Singh V,Khan T,Cheng JS,Asif A,Vachharajani TJ, Contrast-induced nephropathy: Pathophysiology, risk factors, and prevention. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia. 2018 Jan-Feb     [PubMed]
Hiremath S,Akbari A,Wells GA,Chow BJW, Are iso-osmolar, as compared to low-osmolar, contrast media cost-effective in patients undergoing cardiac catheterization? An economic analysis. International urology and nephrology. 2018 Aug     [PubMed]
Katsiki N,Tsioufis C,Hahalis G,Athyros VG, Contrast-induced acute kidney injury: beware of the risk after coronary angiography. Expert review of cardiovascular therapy. 2018 Feb     [PubMed]
Yen CC,Sung SF,Hsu YH, Clinical presentations of contrast-induced encephalopathy in end-stage renal disease. Internal medicine journal. 2018 May     [PubMed]
Matthews E, Acute Kidney Injury and Iodinated Contrast Media. Radiologic technology. 2018 May     [PubMed]
Nijssen EC,Nelemans PJ,Rennenberg RJ,van Ommen V,Wildberger JE, Evaluation of Safety Guidelines on the Use of Iodinated Contrast Material: Conundrum Continued. Investigative radiology. 2018 Oct     [PubMed]
Qian G,Liu CF,Guo J,Dong W,Wang J,Chen YD, Prevention of Contrast-Induced Nephropathy by Adequate Hydration Combined with Isosorbide Dinitrate for Patients with Renal Insufficiency and Congestive Heart Failure. Clinical cardiology. 2018 Jul 27     [PubMed]
Lou B,Gao H, Contrast-induced nephropathy prevention by remote ischemic preconditioning: Effect of diabetes mellitus. International journal of cardiology. 2018 Oct 1     [PubMed]
Samadian F,Dalili N,Mahmoudieh L,Ziaei S, Contrast-induced Nephropathy: Essentials and Concerns. Iranian journal of kidney diseases. 2018 May     [PubMed]
Neugarten J,Golestaneh L,Kolhe NV, Sex differences in acute kidney injury requiring dialysis. BMC nephrology. 2018 Jun 8     [PubMed]
Windpessl M,Kronbichler A, Pro: Contrast-induced nephropathy-should we try to avoid contrast media in patients with chronic kidney disease? Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2018 Jun 3     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry APMLE Part 3. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry APMLE Part 3, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry APMLE Part 3, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry APMLE Part 3. When it is time for the Surgery-Podiatry APMLE Part 3 board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry APMLE Part 3.