Neuroanatomy, Pyramidal Tract Lesions


Article Author:
Akash Lohia


Article Editor:
Juanette McKenzie


Editors In Chief:
Myron Bodman
Donald Kushner


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
4/26/2019 11:35:35 PM

Introduction

The central nervous system (CNS) is a complex network of components that allow an organism to interact with its environment. It is made up of multiple different parts, each of which plays a different role. Primarily, the CNS is formed by the upper motor neurons (UMN) which carry signals for movement down to the lower motor neurons (LMN) which signal the muscles to either contract or relax.

The UMN further subdivides into multiple tracts, each of which has specific functions within the body. Specifically, the pyramidal tract is the main pathway that carries signals for voluntary movement. Lesions to the pyramidal tract can lead to devastating consequences such as spasticity, hyperactive reflexes, weakness, and a Babinski sign (stroking the sole of the foot causes the big toe to move upward). These symptoms are all characteristic of an upper motor neuron lesion. However, certain symptoms are specific to a pyramidal tract lesion.[1]

Structure and Function

The pyramidal tracts are part of the UMN system and are a system of efferent nerve fibers that carry signals from the cerebral cortex to either the brainstem or the spinal cord. It divides into two tracts: the corticospinal tract and the corticobulbar tract.

The corticospinal tract consists of neurons that synapse on the spinal cord controlling movements in the limbs and trunk. It originates in multiple areas of the brain, mainly in the primary motor cortex (Brodmann area 4) and in premotor areas (Brodmann area 6). However, it can also originate from the somatosensory cortex, cingulate gyrus, and the parietal lobe. From here, it will descend through the corona radiata, internal capsule, cerebral peduncles, pons, and upper medulla. Once it reaches the lower medulla, about 85 to 90% of the fibers will cross over or “decussate” at the pyramidal decussation to form the lateral corticospinal tract (LCST). They continue their descent in the lateral funiculus and terminate at all levels of the spinal cord. A few of these fibers that are responsible for fine motor function such as controlling finger and hand movement will synapse directly on lower motor neurons. However, most will terminate in lower motor neuron “pools” (groups of interneurons that process and integrate the information before passing it on to the lower motor neurons). At the pyramidal decussation, the 10 to 15% of fibers that did not decussate will continue down uncrossed as the anterior corticospinal tract (ACST). These fibers are involved in controlling proximal muscles such as those in the trunk. Typically lesions of the ACST tend to have a minimal clinical effect.

The pyramidal decussation is a critical concept to understand. Because of the crossing over of the fibers, the location of the lesion will determine which side the symptoms will arise. Lesions above the decussation will cause symptoms on the contralateral side of the body, whereas lesions below the decussation (typically the spinal cord) will cause symptoms on the ipsilateral side.

The corticobulbar tract synapses on the cranial nerves controlling muscles of the face, head, and neck. It originates in frontal lobe’s primary motor cortex and follows a similar path to the corticospinal tract. It descends through the corona radiata and the internal capsule. They will then exit and synapse directly on the lower motor neurons of cranial nerves. The fibers of the corticobulbar tract bilaterally innervate almost every cranial nerve except for cranial nerves VII and XII, which are innervated by the contralateral cortex. What this means is that a corticobulbar tract lesion on the left side of the face will cause weakness of the right side. However, since every other cranial nerve except for VII and XII are innervated bilaterally (both the left and right hemispheres), lesions to both sides of the corticobulbar tract will need to occur for symptoms to appear.[2][3]

Embryology

The pyramidal tract arises from layer-V pyramidal cells in the cerebral cortex. In humans, the pyramidal tract is one of the last developing descending pathways. While the fibers of the pyramidal tract reach the pyramidal decussation by the eighth week of fertilization, the actual development takes much longer, and full myelination does not fully complete until between 2 and 3 years of age. A multitude of genes guides this developmental process. However, much of this process is still being researched and is not fully known.[4]

Blood Supply and Lymphatics

The pyramidal tract, specifically the corticospinal tract, spans an incredibly long distance along the body. Damage to specific vasculature structures can lead to damage to the tract.

The pyramidal tract originates in the primary motor cortex. The primary motor cortex for the face and upper extremities receive blood from the middle cerebral artery (MCA) while the primary motor cortex for the lower extremities receives blood from the anterior cerebral artery (ACA). An occlusion of either of these arteries can lead to weakness in the associated extremities. As the corticospinal tract passes down, it will go through the corona radiata and internal capsule, which are innervated by the lenticulostriate arteries (branches of the MCA). The occlusion of these arteries will lead to contralateral weakness of both upper and lower extremities. As the corticospinal tract passes down into the brainstem, it gets supplied by the basilar artery. The blockage of blood here can result in a variety of symptoms ranging from isolated nerve palsies to tetraplegia or death.[5]

Surgical Considerations

Pyramidal tract lesions can have devastating consequences if not discovered quickly. The most important aspect of surgery focuses on determining the location and cause of the lesion, which will help dictate the procedure. A detailed history and physical exam will aid in guiding this process. Pyramidal tract lesions will present very similarly to upper motor lesions with symptoms such as hyperreflexia, weakness, spasticity, and a Babinski sign. Damage to the corticobulbar tract can present with additional symptoms of lower facial weakness and changes to speech.

Initial treatment for these lesions is typically intensive rehabilitation and exercise. They can also be managed with medical interventions such as botulinum toxin, benzodiazepines, and baclofen, which can all help to decrease the spasticity and contractures to improve functionality and quality of life in patients. It is only when these measures fail, and in the cases of a severe and life-threatening emergency, that surgery becomes a consideration.[6]

Clinical Significance

Pyramidal tract lesions can occur from any type of damage to the brain or spinal cord. They can result from a variety of injuries and diseases such as strokes, abscesses, tumors, hemorrhage, meningitis, multiple sclerosis, or trauma. Damage to the corticospinal tract will present similarly to upper motor lesion syndrome and will present with symptoms such as spasticity, clonus, hyperreflexia, and Babinski sign. Damage to the corticobulbar tract can present with pseudo-bulbar palsy or damage to cranial nerves VII or XII.

Pseudo-bulbar Palsy

The corticobulbar tract bilaterally innervates most of the cranial nerves, except VII and XII, which means that for symptoms to arise from damage to these nerves, both sides of the corticobulbar tract must be injured as is the case in pseudo-bulbar palsy. Symptoms in this condition may include slow speech, dysphagia (difficulty swallowing), dysarthria (difficulty speaking), spastic tongue, and pseudobulbar affect (uncontrollable episodes of laughing or crying).[7][8]

Cranial Nerve VII or XII Lesion

Unilateral lesion to either of these nerves will cause contralateral symptoms. Since cranial nerve VII innervates muscles of the lower face, damage to this nerve will cause lower facial droop on the opposite side of the lesion. Damage to cranial nerve XII will lead to weakness in the contralateral hypoglossal muscle leading to deviation of the tongue to the opposite side of the lesion.[9]

Other Issues

There are a wide variety of pathologies associated with pyramidal tract lesions. They can be the result of many diseases including stroke, amyotrophic lateral sclerosis, multiple sclerosis, and central pontine myelinolysis. 

Stroke

Cerebrovascular accidents, or strokes, are caused by occlusion of blood flow to a particular area of the brain. They divide into either an ischemic stroke or hemorrhagic stroke. Ischemic strokes are the sudden interruption of blood supply to a structure due to occlusion or obstruction by a thrombus or embolus. Hemorrhagic strokes result from the rupture of a blood vessel leading to bleeding into the brain. Because the pyramidal tract is such a large structure and receives blood supply from so many different arteries, any occlusion to these supporting arteries can lead to a wide variety of symptoms.[10]

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to progressive damage of nerve cells within the spinal cord and brain. It causes symptoms of both upper and lower motor neuron syndrome. Upper motor neuron symptoms include spastic gait, dysphagia, dysarthria, and clonus. Lower motor neuron symptoms include muscle atrophy, weakness, and flaccidity. As it progresses upwards, it causes such severe dysphagia and dyspnea that the patient is unable to breathe and generally dies from respiratory failure. It most commonly afflicts adults between the ages of 40 and 70 and at this time is incurable. The only pharmaceutical treatment available that has been shown to extend the lifespan of patients is riluzole, a glutamate blocker.[11]

Multiple Sclerosis

Multiple sclerosis is a demyelinating autoimmune disease of the nervous system. Its manifestations show a wide range of symptoms such as double vision, muscle weakness, coordination trouble, or cognitive disturbance. It is the most common CNS autoimmune disorder, and there currently is no cure. Management centers on improving function after an attack, and preventing recurrent attacks.[12]

Central Pontine Myelinolysis

Central pontine myelinolysis (CPM) is a condition that involves damage to nerve cells in the pons. It can be devastating leading to paralysis, dysphagia, dysarthria, pseudobulbar palsy, and locked-in syndrome (loss of all muscle movement except for eye movements). Its most common cause is the rapid correction of low blood sodium levels (hyponatremia). If the sodium levels are corrected too quickly, water gets driven out of the brain cells which causes widespread damage throughout the entire brain. Once CPM has begun, it cannot be corrected. Therefore, the best treatment of CPM is prevention by correcting hyponatremia at a consistent rate.[13]


  • Image 7095 Not availableImage 7095 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Neuroanatomy, Pyramidal Tract Lesions - Questions

Take a quiz of the questions on this article.

Take Quiz
A 70-year-old male presents with an injury to the corticospinal tract at the level of the pons on the left side. How will the symptoms of this injury present?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents to the emergency department after a stroke with a lesion to the motor neuron of his right glossopharyngeal nerve. Which of the following would be the expected presentation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old male with a history of congestive heart failure presents to the emergency department with symptoms of fatigue, nausea, vomiting, and confusion. A basic metabolic profile is done, which shows low levels of a certain electrolyte, which the provider immediately treats. However, a few hours later, the patient loses complete function of all his muscles. He is fully paralyzed and is only able to move his eyes. MRI showed involvement of the pyramidal tracts. Which of the following electrolyte abnormalities was most likely originally present in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old male is brought to the emergency department after a car accident. His vital signs upon arrival are within normal limits. He is unconscious and has multiple visible bruises but no obvious signs of bleeding. Physical examination shows spasticity and hyperreflexia of his right leg. When stroking the sole of the right foot, the big toe moves upward. MRI shows injury to the spinal cord at the thoracic level. Which of the following spinal tracts is most likely damaged in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old female patient presents to the emergency department after an ischemic stroke. She is stabilized in the emergency department with alteplase and started on aspirin. The next day on follow up, the patient has a brisk patellar and Achilles reflex on the right side, a positive Babinski sign on her right foot, and a complete spastic extension of her right leg. Which of the following provides the blood supply to the structure involved?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 75-year-old male presents to the emergency department with a right-sided facial droop and impaired consciousness. He is also found to have complete paralysis of his right upper extremities. On physical examination, his upper extremities are held in extension and are unable to be flexed. The biceps and triceps reflex is brisk. He has a medical history of hypertension, diabetes, and renal failure. He is found to have a hemorrhagic stroke on CT and has received the treatment for it. What artery was occluded, leading to these symptoms?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Neuroanatomy, Pyramidal Tract Lesions - References

References

Ludwig PE,Varacallo M, Neuroanatomy, Central Nervous System (CNS) 2019 Jan;     [PubMed]
Emos MC,Agarwal S, Neuroanatomy, Upper Motor Neuron Lesion 2019 Jan;     [PubMed]
Natali AL,Bordoni B, Neuroanatomy, Corticospinal Cord Tract 2019 Jan;     [PubMed]
Kubis N,Catala M, [Development and maturation of the pyramidal tract]. Neuro-Chirurgie. 2003 May;     [PubMed]
Javed K,Lui F, Neuroanatomy, Lateral Corticospinal Tract 2019 Jan;     [PubMed]
Rhee PC, Surgical Management of Upper Extremity Deformities in Patients With Upper Motor Neuron Syndrome. The Journal of hand surgery. 2019 Mar;     [PubMed]
Stejskalova Z,Rohan Z,Rusina R,Tesar A,Kukal J,Kovacs GG,Bartos A,Matej R, Pyramidal system involvement in progressive supranuclear palsy - a clinicopathological correlation. BMC neurology. 2019 Mar 20;     [PubMed]
Besson G,Bogousslavsky J,Regli F,Maeder P, Acute pseudobulbar or suprabulbar palsy. Archives of neurology. 1991 May;     [PubMed]
Sonne J,Lopez-Ojeda W, Neuroanatomy, Cranial Nerve 2019 Jan;     [PubMed]
Khaku AS,Tadi P, Cerebrovascular Disease (Stroke) 2019 Jan;     [PubMed]
Demel SL,Broderick JP, Basilar Occlusion Syndromes: An Update. The Neurohospitalist. 2015 Jul;     [PubMed]
Zarei S,Carr K,Reiley L,Diaz K,Guerra O,Altamirano PF,Pagani W,Lodin D,Orozco G,Chinea A, A comprehensive review of amyotrophic lateral sclerosis. Surgical neurology international. 2015;     [PubMed]
Ghasemi N,Razavi S,Nikzad E, Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell journal. 2017 Apr-Jun;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry APMLE Part 2. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry APMLE Part 2, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry APMLE Part 2, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry APMLE Part 2. When it is time for the Surgery-Podiatry APMLE Part 2 board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry APMLE Part 2.