Medial Collateral Ligament (MCL) Knee Injuries


Article Author:
Usker Naqvi


Article Editor:
Andrew Sherman


Editors In Chief:
Myron Bodman
Donald Kushner


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
6/4/2019 12:55:27 PM

Introduction

The medial collateral ligament (MCL) is a flat band of connective tissue that runs from the medial epicondyle of the femur to the medial condyle of the tibia. Its role is to provide valgus stability to the knee joint. MCL injuries often occur in sports, especially in skiing; in fact, 60% of skiing knee injuries involve the MCL. [1][2][3]

Etiology

The mechanism of injury may involve abrupt turning, cutting, or twisting. MCL injuries can also result from direct blows to the lateral knee that cause an extreme valgus stress. Injuries to the MCL can be isolated but more commonly will occur in conjunction with injuries to other knee structures. For example, the “unhappy triad” consists of concomitant injuries to the MCL, anterior cruciate ligament (ACL), and medial meniscus. [4][5][6]

History and Physical

Patients may report acute or chronic medial knee pain. In acute cases, the patient will usually be able to describe a specific recent incident that resulted in the onset of pain or swelling, such as a sporting event. The patient may hear or feel a pop at the time of injury. They may or may not have difficulty walking and complain of knee instability.

Examination of the knee in MCL injury is most revealing at the time of injury and is often diagnosed on the sidelines by physical exam. However, diagnosis can still be made when the patient later presents in the emergency room or office setting.

Inspection may reveal a joint effusion and ecchymosis either at the lateral knee from direct trauma or at the medial knee from the ligament injury. Effusion should be localized around the MCL and will rarely be a generalized knee effusion, as this would be more likely due to intraarticular injuries. Gait is frequently normal, though patients can sometimes present with an antalgic or vaulting gait.

Palpation should be performed along the full length of the MCL. Tenderness specifically at one attachment site indicates the injury likely occurred there. Mid-substance tears can cause tenderness at the medial joint line, which can be confused with a medial meniscus injury. Distal MCL tears can cause tenderness at its attachment to the medial tibial condyle, which can be confused with pes anserine bursitis.

Valgus stress testing is the best way to test the integrity of the MCL directly. The patient should be positioned supine with the hip abducted on the affected side so that the leg is unsupported off the table. The knee should be brought into 30 degrees of flexion. The examiner should grasp the ankle with one hand and push the ankle laterally while applying a valgus force to the knee with the other hand. Laxity should be noted and then graded per the following classification:

Grade 1 – pain along the MCL with valgus stress but little to no joint opening

Grade 2 – some opening of the joint but with a firm endpoint

Grade 3 – significant joint opening, no endpoint

The exam should be repeated with the knee in full extension. The posterior cruciate ligament (PCL) and posterior joint capsule contribute to knee stability in full extension, so if the test is positive at full extension, then it is likely that there is more than just an isolated MCL injury.

Evaluation

Imaging should include plain radiographs to evaluate for occult fractures or avulsion fractures. A Pellegrini-Stieda lesion, in which there is ossification of the MCL near its attachment to the femoral epicondyle, suggests an old avulsion injury of the MCL. Stress radiographs may also be performed, especially in skeletally immature patients. However, the imaging test of choice is magnetic resonance imaging (MRI) without contrast. In addition to direct evaluation of the MCL, it can also provide valuable information about other soft tissue structures about the knee and whether concomitant injuries occurred. Occasionally, MR arthrography may be used when meniscal or capsular tearing is suspected. Ultrasound evaluation can be considered as a faster, more portable, and lower cost alternative to MRI. A sonographic exam was able to identify injury location and severity in 94% of patients with MCL injury and offers the added benefit of performing the dynamic valgus stress test.[7][8][9]

Treatment / Management

Treatment in most cases is conservative. Grade I to II injuries are treated with a conservative approach unless there is an associated injury that is more severe and warrants surgery. Non-steroidal anti-inflammatory drugs (NSAIDs) may be used to help control pain and swelling. A knee immobilizer and crutches may also be used short-term after injury, with gradually less reliance on these as pain and swelling subside, and the patient can participate adequately in physical therapy. Therapy exercises should include quadriceps strengthening, cycling, and progressive resistance exercises. Patients should gradually progress through a return-to-play protocol that involves increasing the difficulty of the exercise and sports-specific maneuvers. Patients with grade I injuries typically can return to play within ten to 14 days, while those with grade II injuries have more variable timelines for return and should wait until both lower extremities display equal strength, and there is no pain elicited by valgus stress. Recovery for grade I and II injuries with conservative treatment only has shown effectiveness in 98% of athletes.[10][11]

Grade III injuries may be treated conservatively or operatively. The operative route is especially common for athletes because this severity of the injury can lead to lasting rotational instability. Grade III injuries are also often accompanied by associated injuries that require surgery, such as concomitant ACL tear. Acute tears are typically able to be repaired, while chronic tears may require reconstruction using allograft or autograft. After surgery, the patient should wear a hinged brace locked at 30 degrees of flexion and is to be toe-touch weight bearing for about three weeks. The range of motion exercises may be performed up to 90 degrees, and strengthening exercises should be done while in the brace. After three weeks, weight-bearing can be advanced to full, and the brace can be unlocked to allow for full range of motion. The patient should continue to advance to closed kinetic chain exercises and higher resistance strength exercises.

Pearls and Other Issues

Complications of MCL injuries are rare, especially when detected early and treated. Recurrence of rupture is unlikely. Untreated cases or those with poor adherence to rehab programs may develop ossification at the injury site, as in a Pellegrini-Stieda lesion. 

Enhancing Healthcare Team Outcomes

MCL injuries are best managed by a multidisciplinary team that includes an orthopedic nurse and a physical therapist.

MCL injuries are quite common in sporting individuals. However, it is important for clinicians to remember that this is one injury that can heal with conservative treatment. The patient should be encouraged to enter a rehabilitation program after the acute symptoms have subsided. Return to sports is possible in most athletes. However, professional athletes may want to consider surgery as the repair is more durable.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Medial Collateral Ligament (MCL) Knee Injuries - Questions

Take a quiz of the questions on this article.

Take Quiz
A 17-year-old rugby player presents with right medial knee pain. He denies catching or locking. His exam reveals medial knee tenderness, and negative McMurray, Lachman, and posterior drawer tests. Valgus stress causes discomfort but no laxity. He likely has:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Surgical treatment is appropriate for which of the following medial collateral ligament (MCL) injuries?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Surgical treatment is appropriate for which of the following medial collateral ligament (MCL) injuries?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A female soccer player presents with medial right knee pain. Valgus stress test elicits pain and slight laxity. MRI of the right knee demonstrates partial tearing of some of the fibers of the medial collateral ligament (MCL). How would this injury be classified?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not included in the conservative management strategies for medial collateral ligament (MCL) injuries?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents to clinic with knee pain. She was playing soccer on the indoor turf when her cleats got stuck as she tried to change directions. She feels medial knee pain. The provider suspects that she might have injured her tibial collateral ligament. Which special test would be best to assess for this injury?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Medial Collateral Ligament (MCL) Knee Injuries - References

References

Desai VS,Wu IT,Camp CL,Levy BA,Stuart MJ,Krych AJ, Midterm Outcomes following Acute Repair of Grade III Distal MCL Avulsions in Multiligamentous Knee Injuries. The journal of knee surgery. 2019 May 8;     [PubMed]
Loughran GJ,Vulpis CT,Murphy JP,Weiner DA,Svoboda SJ,Hinton RY,Milzman DP, Incidence of Knee Injuries on Artificial Turf Versus Natural Grass in National Collegiate Athletic Association American Football: 2004-2005 Through 2013-2014 Seasons. The American journal of sports medicine. 2019 May;     [PubMed]
Lundblad M,Hägglund M,Thomeé C,Hamrin Senorski E,Ekstrand J,Karlsson J,Waldén M, Medial collateral ligament injuries of the knee in male professional football players: a prospective three-season study of 130 cases from the UEFA Elite Club Injury Study. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2019 Apr 4;     [PubMed]
Elkin JL,Zamora E,Gallo RA, Combined Anterior Cruciate Ligament and Medial Collateral Ligament Knee Injuries: Anatomy, Diagnosis, Management Recommendations, and Return to Sport. Current reviews in musculoskeletal medicine. 2019 Mar 30;     [PubMed]
Jung KH,Youm YS,Cho SD,Jin WY,Kwon SH, Iatrogenic Medial Collateral Ligament Injury by Valgus Stress During Arthroscopic Surgery of the Knee. Arthroscopy : the journal of arthroscopic     [PubMed]
Westermann RW,Spindler KP,Huston LJ,Wolf BR, Outcomes of Grade III Medial Collateral Ligament Injuries Treated Concurrently With Anterior Cruciate Ligament Reconstruction: A Multicenter Study. Arthroscopy : the journal of arthroscopic     [PubMed]
Albtoush OM,Horger M,Springer F,Fritz J, Avulsion fracture of the medial collateral ligament association with Segond fracture. Clinical imaging. 2019 Jan - Feb;     [PubMed]
DeFroda SF,Bokshan SL,Vutescu ES,Sullivan K,Owens BD, Accuracy of internet images of ligamentous knee injuries. The Physician and sportsmedicine. 2019 Feb;     [PubMed]
Encinas-Ullán CA,Rodríguez-Merchán EC, Isolated medial collateral ligament tears: An update on management. EFORT open reviews. 2018 Jul;     [PubMed]
Goff AJ,Page WS,Clark NC, Reporting of acute programme variables and exercise descriptors in rehabilitation strength training for tibiofemoral joint soft tissue injury: A systematic review. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine. 2018 Nov;     [PubMed]
Logan CA,Murphy CP,Sanchez A,Dornan GJ,Whalen JM,Price MD,Bradley JP,LaPrade RF,Provencher MT, Medial Collateral Ligament Injuries Identified at the National Football League Scouting Combine: Assessment of Epidemiological Characteristics, Imaging Findings, and Initial Career Performance. Orthopaedic journal of sports medicine. 2018 Jul;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Podiatry APMLE Part 2. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Podiatry APMLE Part 2, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Podiatry APMLE Part 2, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Podiatry APMLE Part 2. When it is time for the Surgery-Podiatry APMLE Part 2 board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Podiatry APMLE Part 2.