Geriatric Cervical Spine Injury


Article Author:
Rebecca Jeanmonod


Article Editor:
Matthew Varacallo


Editors In Chief:
Shivajee Nallamothu
Matthew Varacallo
Joshua Tuck


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
11/26/2018 11:49:41 AM

Introduction

According to the National Hospital Ambulatory Medical Care Survey, there are 12 injury-related emergency department visits for every 100 persons over the age of 65 annually. Geriatric patients account for a quarter of trauma admissions nationally. Cervical spine injuries are relatively common in the elderly population.[1] These injuries are associated with high morbidity and mortality rates.[2]

The percentage of elderly patients with trauma has been on the rise and will continue to increase into the ensuing decades.[2][3][4][5] Clinicians are cautioned to maintain a heightened index of clinical suspicion to rule out cervical pathology even in the setting of low-energy mechanisms of injury, for example, ground level falls. Often geriatric traumas present with confounding variables such as baseline dementia, auditory and visual impairment, and inherent difficulty when cooperating with the acute physical examination.[0][0]

Etiology

Most geriatric cervical spine injuries are secondary to falls (greater than 60%). They can, however, occur secondary to any traumatic mechanism (for example, motor vehicle accidents, assault, forced hyperextension or hyperflexion injuries). Geriatric patients have a higher risk of low-energy injuries secondary to, but not limited to, osteoporosis, osteopenia, and a generalized decrease in the spinal columns physiologic protective capabilities secondary to decreases in total mobility and degenerative changes.[0][0]

Epidemiology

One-third of geriatric patients sustain falls each year, and 12% of elderly Americans present to emergency departments annually for injury-related visits. Given that people over age 65 are the fastest growing segment of the population, this represents a significant burden of disease.

While the epidemiology of traumatic cervical spine fractures is not well-known or established for the general adult population, the incidence rate demonstrates a bimodal class pattern by age groups. These injuries first reach a peak incidence rate in patients age 15 to 54 years of age, and the second peak incidence is reached between ages 65 to 80 years of age.[9]  Cervical fractures have a 2.6% to 4.7% prevalence rate in patients older than 65 years old, and most studies cite at least a 50% (or greater)  incidence rate of low energy or ground level falls as the source of these cervical spine fractures.[10][0]

Pathophysiology

The cervical spinal column is composed of seven stacked vertebrae with intervening intervertebral disks. The spinal column is made of 2 columns: (1) an anterior column comprising vertebral bodies, discs, the stabilizing anterior and posterior longitudinal ligaments, and (2) a posterior column, composed of the pedicles, laminae, facets, spinous processes, and stabilizing ligamentum flavum, capsular ligaments, and nuchal ligament complex. The cervical column has considerable mobility, allowing flexion, extension, and rotation. This makes the cervical spine prone to injury. Spinal injuries are considered unstable if both the anterior and the posterior column are disrupted at the same level.

In the young cervical spine, the most mobile segment, and therefore the segment most prone to injury, is C4 to C7. As the cervical spine ages, it is believed that degenerative changes result in decreased mobility in the lower cervical spine, making C1 to C2 the most mobile segment, and therefore, the most prone to injury. It has also been noted that low-velocity mechanisms of injury (such as fall, as compared to motor vehicle crashes) are more likely to result in upper cervical spine injury than lower cervical spine injury, regardless of age. Older individuals are more likely to have low-velocity mechanisms, with falls being the most common cause of cervical spine injury. Therefore, it is not surprising that the most common cervical spine injury seen in geriatric patients is an injury at C2, followed by injury at C1.

Elderly patients may have other pathologies increasing the risk of cervical spine injury, including ankylosing spondylitis, rheumatoid arthritis, and cervical canal stenosis. They are also more likely to have metastatic spinal tumors and decreased bone density related to aging. The presence of pre-existing cervical spine abnormalities increases the risk of spinal cord injuries in elderly patients, particularly central cord syndrome and anterior cord syndrome.

History and Physical

Most geriatric patients with cervical spine injury will relate a history of trauma. However, cervical spine injury may be secondary to a minor mechanism that the patient may not have considered worth reporting. For example, forceful pulling on the hand in the setting of spine tumor. In this population, it is also important to remember that cognitive decline is common in both patients coming from home and patients coming from facilities, and the history may be somewhat limited or incomplete. A high index of suspicion for occult trauma is important. The provider should attempt to obtain a history from witnesses and caregivers regarding the event.

It is important to consider the potential for an underlying medical reason for the presenting trauma. Geriatric patients may be involved in motor vehicle accidents or falls as a result of arrhythmia, stroke, dissection, infection, seizure, metabolic disturbance, hemorrhage, or polypharmacy. These patients often have both medical disease as well as traumatic injury, and both need careful evaluation.

The physical exam should be thorough, beginning with the ABCs and proceeding through a complete neurologic exam. The patient should be fully exposed and rolled to assess for other signs of injury/infection, and every joint should be ranged to avoid missing occult injury.

Evaluation

The best diagnostic test readily available to assess for cervical spine injury in the emergency setting is a CT scan. Plain radiographs are limited in the geriatric patient because of osteopenia and osteoarthritis. Further, the most commonly injured areas of the cervical spine in the geriatric patient (C2 and C1) are poorly visualized on plain films. Therefore, when a decision to image a geriatric patient is made, the provider should obtain a CT scan.

Since the overall incidence of injury to the spine is low, and CT scanning is costly and exposes patients to ionizing radiation, several validated decision rules provide guidance as to which patients can safely forego advanced imaging. The 2two most common decision rules used to clear the cervical spine are the Canadian C-spine Rule and NEXUS (National Emergency X-radiography Utilization Study). Unfortunately, the Canadian C-spine Rule mandates imaging of any patient age 65 or older and further requires the patient has a Glasgow coma score (GCS) of 15. This makes it useless in reducing imaging in the geriatric trauma patient.

The NEXUS decision rule (absence of focal neurologic deficit, absence of intoxication, absence of midline neck tenderness, and absence of distracting injury in a patient with normal alertness) has been validated in geriatric patients for detection of clinically important injuries. However, data are conflicting, and many providers are reluctant to use this decision rule in the geriatric patient. NEXUS also suffers from difficulty with reproducibility of results. "Normal alertness" and "absence of distracting injury," in particular, are subject to interpretation by the evaluating provider. One prospective study on geriatric patients used "baseline mental status" as a substitute for "normal alertness" and "signs of trauma to the head or neck" as a substitute for "distracting injury" and found NEXUS to be 100% sensitive in detection of cervical injury, but the incidence of injury in this study was low.[0][0]

The weight of the evidence supports clinical decision rule use to clear the geriatric cervical spine, but given that the geriatric trauma patient has double the risk of cervical spine injury as compared to younger patients, the provider should have a low threshold to image these patients. 

Geriatric patients with a cervical spine fracture have a high rate of fractures to other vertebrae in the spinal column. Therefore, diagnosis of a fracture in the cervical spine should prompt imaging of the spine in its entirety.[0][0][0][0][0][0]

Treatment / Management

Management of cervical spine injury in geriatric patients is controversial. Options for upper cervical spine injuries include rigid collar immobilization without reduction, halo cast immobilization with reduction, and surgical management. A metanalysis of these management strategies found no difference in morbidity, mortality, or complications, and non-union was common. Since patients often have other associated injuries, these patients should be managed by a  multidisciplinary team including trauma surgery, orthopedics, physical therapy, and medical doctors.[0]

Enhancing Healthcare Team Outcomes

An interprofessional approach to cervical spine injury in the elderly is recommended.

Unlike the younger patient, the management of cervical spine injury in the elderly patient remains controversial. Making the treatment more difficult is that many elderly patients also have numerous comorbidities. Thus, these patients are best managed by a multidisciplinary team that includes trauma surgery, orthopedics, physical therapy, and medical doctors. No matter what treatment approach is undertaken, one should consider the patient's age, comorbidity and potential complication of the procedure. Many elderly patients may not be candidates for surgery, and one also has to take into account the post-procedure quality of life.[0]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Geriatric Cervical Spine Injury - Questions

Take a quiz of the questions on this article.

Take Quiz
The National Emergency X-Radiography Utilization Study (NEXUS) is a set of validated criteria used to decide which trauma patients require cervical spine imaging. Which of the following is not a criterion to meet NEXUS?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the most common cause of cervical spine injury in the geriatric population?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements is true regarding the evaluation of the cervical spine in a geriatric trauma patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is true regarding geriatric cervical spine injury?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Why are geriatric patients more likely to have cervical spine injury as compared to young patients?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Geriatric Cervical Spine Injury - References

References

Bokhari AR,Sivakumar B,Sefton A,Lin JL,Smith MM,Gray R,Hartin N, Morbidity and mortality in cervical spine injuries in the elderly. ANZ journal of surgery. 2018 Oct 8     [PubMed]
Bank M,Gibbs K,Sison C,Kutub N,Paptheodorou A,Lee S,Stein A,Bloom O, Age and Other Risk Factors Influencing Long-Term Mortality in Patients With Traumatic Cervical Spine Fracture. Geriatric orthopaedic surgery     [PubMed]
Varacallo M,Pizzutillo P, Osteopenia null. 2018 Jan     [PubMed]
Varacallo MA,Fox EJ, Osteoporosis and its complications. The Medical clinics of North America. 2014 Jul     [PubMed]
Varacallo MA,Fox EJ,Paul EM,Hassenbein SE,Warlow PM, Patients' response toward an automated orthopedic osteoporosis intervention program. Geriatric orthopaedic surgery     [PubMed]
Yadollahi M,Paydar S,Ghaem H,Ghorbani M,Mousavi SM,Taheri Akerdi A,Jalili E,Niakan MH,Khalili HA,Haghnegahdar A,Bolandparvaz S, Epidemiology of Cervical Spine Fractures. Trauma monthly. 2016 Jul     [PubMed]
Golob JF Jr,Claridge JA,Yowler CJ,Como JJ,Peerless JR, Isolated cervical spine fractures in the elderly: a deadly injury. The Journal of trauma. 2008 Feb     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Orthopaedic. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Orthopaedic, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Orthopaedic, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Orthopaedic. When it is time for the Surgery-Orthopaedic board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Orthopaedic.