Hyperbaric Treatment Of Thermal Burns


Article Author:
Matthew Edwards


Article Editor:
Jeffrey Cooper


Editors In Chief:
Shivajee Nallamothu
Matthew Varacallo
Joshua Tuck


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
5/15/2019 9:57:11 PM

Introduction

Thermal burns are common in the United States, and approximately 2 million people are injured every year, with about 155 per million patients needing admission to a hospital, and 6500 cases resulting in death. Burns are complex and dynamic injuries that cause profound activation of platelets and white cells, destruction of the microvasculature by coagulation or thrombosis, and accumulation of edema.[1] Medical treatment of burns is critical, especially when they are second degree or worse and when a substantial amount of body surface area is affected. There are multiple factors to why thermal burns are difficult to treat, and hyperbaric oxygen therapy (HBO) can be used as part of the treatment regimen to reduce healing time and improve outcomes.

The characteristic of a burn is described as a zone of coagulation, surrounded by an area of stasis, and bordered by erythema. The destruction and obstruction of microvascularization impede cellular and humoral immunity and alters macrophage function. The microcirculation is compromised to the greatest extent during the first 12 to 24 hours after the burn has occurred. The injury can remain in a state of flux for 72 hours, and the lack of oxygenation causes ischemic necrosis rather quickly. The burn also causes extensive edema, which is caused by an increase in capillary permeability, leading to hypoproteinemia.[2] This causes a decrease in intravascular oncotic pressure, and fluid can easily leak out of the vasculature and into the interstitial space.

Goals of treating burns are minimizing the edema, keeping tissue viable in the stasis zone of the burn, protecting the microvasculature, and enhancing host defenses to stave off infection.[1] Hyperbaric oxygen therapy addresses these physiological derangements and can be beneficial to patients. Once the patient is stabilized, treatment is then aimed at patient survival, rapid wound healing, and reduction of scarring/abnormal pigmentation all while being cost effective. Early treatment of thermal burns is critical. It is important to initiate fluid resuscitation as quickly as possible, and the patient will sometimes require several liters acutely. The treatment team should aim to decrease fluid losses from the wound and slow bacterial growth by using topical agents and antibiotics before moving the treatment plan forward. Debridement, along with placement of a skin graft or flap, helps aid in these.

The most concerning element to a thermal burn is an infection which is the leading cause of death from burns. This is due to a loss in the integumentary barrier that leads to bacterial invasion and growth as well as obstructed or compromised microvasculature that prevents cellular and humoral elements from reaching the burn site. The immune system is dampened, limiting immunoglobulins and macrophage function in chemotaxis, phagocytosis, and other antibiotic properties.  Besides infection, burns can lead to a myriad of different comorbidities as well, which include pneumonia, respiratory failure, cellulitis, urinary tract infection (UTI), and sepsis.[3]

Since 1965, HBO therapy has been suggested to improve outcomes in thermal burns after it was observed to heal second-degree burns faster in a group of coal miners being treated for carbon monoxide therapy. The skin adjacent to second and third-degree burns is more hypoxic than normal skin, and continued studies have shown that hypoxic tissue surrounding the burn site can be returned to normal oxygen levels with oxygen administration under pressure. It has shown to decrease edema through vasoconstriction and preserve microcirculation and enhance oxygen delivery by a direct osmotic effect. HBO also aids in deactivation of white cell adhesion.

Most studies of hyperbaric treatment of burns have been reported using a variety of animal burn models, showing that HBO therapy is beneficial in reducing edema, decreasing fluid requirements, preserving dermal structures with improved vascularity, and increasing immune response.  In human studies, the results have varied but support the potential benefit of HBO therapy as an adjunct therapy.[4] A Cochrane review was published in 2004 that looked at a total of two small randomized trials. These studies demonstrated improved healing, decreased mortality, reduction in hospital stay, and decreased need for surgery.[5] There are studies, however, that have shown little to no benefit with HBO therapy. Insufficient evidence is available to support the routine use of patients with thermal burns, although it is a widely used adjunct therapy. Hyperbaric oxygen does have the potential to decrease healing time and fluid requirements, as well as increase the success of skin grafts, but more studies must be conducted to adopt this into routine practice.

Anatomy

Thermal burns are classified by the depth the tissue injury. There are four classifications set by the American Burn Association:

Superficial: Involve the epidermal layer of the skin. These injuries do not blister but can be painful. They usually self-resolve within 1 week.

Partial Thickness (second-degree): Involve the epidermal layer and parts of the dermal layer. Superficial partial thickness burns blister and are painful but resolve within 21 days and usually do not cause scarring. Deep partial thickness burns always blister and cause damage to hair follicles and glandular tissue. Deep partial thickness burns are extremely painful. These burns can get infected and may need to be grafted depending on the extent of the injury. These injuries take up to 9 weeks to heal and will form hypertrophic scarring.

Full Thickness (third-degree): These burns go through the entire dermal layer and frequently injure subcutaneous tissue. Burn eschars, or the denatured dermal layer, is intact acutely. The wound may be anesthetic due to the necrotic nature of the burn. The appearance can be waxy or grey to black. The eschar of the burn will eventually fall off, revealing a bed of granulation tissue. If a full thickness burn does not undergo surgery, it will heal by contracture. These burns never spontaneously heal.

Extension into deep tissues (fourth-degree): These burns involve the underlying soft tissue that may involve muscle or bone. These injuries may be life-threatening and need to be treated immediately.

Indications

Hyperbaric oxygen therapy is indicated for burns that extend into the dermis and beyond. Each case may vary, but if a patient has an inhalation injury, impaired wound healing, extensive edema, or a large area of skin involved, HBO therapy would be a good adjunctive therapy to add. If a patient has received a skin graft or flap, HBO has shown to improve the success of graft placement.[6]

Technique

HBO treatment should be initiated as soon as possible after the injury. Attempting to do three treatments in the first 24 hours is ideal, and then twice daily after that. Sessions are 90 minutes in length at 2.0 ATA to 2.4 ATA and should be continued for 20 to 30 sessions, although the number of treatments depends on the clinical extent of the injury and response to treatment. Patients are monitored in the chamber with blood pressure (BP) cuffs approved to use in monoplace chambers. Ventilator support may be given in the chamber, which is common in patients with who sustained an inhalation injury. Fluid management is crucial in burn patients and needs to be initiated before HBO therapy is started. Several liters of fluid may be needed in the acute phase of the injury, and pumps may be needed to overcome the chamber pressure during HBO treatments.[7]

Clinical Significance

In summary, HBO therapy first 24 hours of burn has shown to:

  1. Decrease edema by vasoconstriction and decrease the chance of burn shock
  2. Decrease wound infections
  3. Promote epithelialization
  4. Increase the viability of skin flaps and grafts
  5. Be effective against carbon monoxide and smoke inhalation injury
  6. Reduce fluid requirements of the patient
  7. Counteract ischemia in tissue by raising oxygen levels hypoxic tissue to supraphysiologic levels

Twenty-four hours after thermal burn injuries, HBO has shown to:

  1. Relieve a paralytic ileus  
  2. Decrease incidence of Cushing’s ulcers
  3. Reduce hypertrophic scarring and ulceration
  4. Counteracts burn encephalopathy/cerebral edema
  5. Reduce the length of hospital stay
  6. Reduce the need for surgery

Enhancing Healthcare Team Outcomes

Thermal burns are best managed by a multidisciplinary team that also includes a wound care nurse. While the treatment in most patients is supportive, recent evidence indicates that HBO therapy may help wounds heal faster. However, the vascular status of the wound must be assessed because without adequate blood supply, HBO therapy may not always work. Empirically sending every patient for HBO therapy is not cost effective.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hyperbaric Treatment Of Thermal Burns - Questions

Take a quiz of the questions on this article.

Take Quiz
Which one of the following is an absolute contraindication for treating a burn patient in the hyperbaric chamber?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 45-year-old female who was recently in a house fire has just received bilateral skin grafts to her lower extremities. The plastic surgeon who conducted the surgery had heard about hyperbaric oxygen therapy in patients with thermal burns to improve healing time. Which one of the following statements is correct about administering hyperbaric oxygen to this post-op burn patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient has a 50% body surface area burn and the hyperbaric medicine service is consulted. Chest x-ray shows a 20% pneumothorax. Which of the following would be the most prudent course of action?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient has been admitted for severe thermal burns of the lower extremities and is developing rapid edema. It is decided that the patient, once stabilized, will undergo hyperbaric oxygen therapy. What physiologic change does hyperbaric oxygen therapy provide that will reduce this patient’s edema?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient is being treated for thermal burns in the intensive care unit 3 days after his initial injury. The patient has been stabilized and the team decides to initiate hyperbaric oxygen therapy to improve wound healing. What has been clinically shown when initiating hyperbaric oxygen therapy 24 hours after a thermal burn injury?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hyperbaric Treatment Of Thermal Burns - References

References

Treatment of burns with hyperbaric oxygen., Hart GB,O'Reilly RR,Broussard ND,Cave RH,Goodman DB,Yanda RL,, Surgery, gynecology & obstetrics, 1974 Nov     [PubMed]
The effect of hyperbaric oxygen therapy on a burn wound model in human volunteers., Niezgoda JA,Cianci P,Folden BW,Ortega RL,Slade JB,Storrow AB,, Plastic and reconstructive surgery, 1997 May     [PubMed]
Adjunctive hyperbaric oxygen therapy reduces length of hospitalization in thermal burns., Cianci P,Lueders HW,Lee H,Shapiro RL,Sexton J,Williams C,Sato R,, The Journal of burn care & rehabilitation, 1989 Sep-Oct     [PubMed]
Hyperbaric oxygen therapy for thermal burns., Villanueva E,Bennett MH,Wasiak J,Lehm JP,, The Cochrane database of systematic reviews, 2004     [PubMed]
Aguayo-Becerra OA,Torres-Garibay C,Macías-Amezcua MD,Fuentes-Orozco C,Chávez-Tostado Mde G,Andalón-Dueñas E,Espinosa Partida A,Alvarez-Villaseñor Adel S,Cortés-Flores AO,González-Ojeda A, Serum albumin level as a risk factor for mortality in burn patients. Clinics (Sao Paulo, Brazil). 2013 Jul     [PubMed]
Jones MW,Cooper JS, Hyperbaric Therapy For Skin Grafts And Flaps . 2019 Jan     [PubMed]
Niinikoski JH, Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World journal of surgery. 2004 Mar     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Orthopaedic. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Orthopaedic, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Orthopaedic, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Orthopaedic. When it is time for the Surgery-Orthopaedic board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Orthopaedic.