Anatomy, Head and Neck, Orbit


Article Author:
Nicholas Luibil


Article Editor:
Bhupendra Patel


Editors In Chief:
Shane Havens
Jim Wang
Koushik Tripathy


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes
Kavin Sugumar


Updated:
3/30/2019 2:13:51 PM

Introduction

The orbits are bony structures of the skull that house the globe, extraocular muscles, nerves, blood vessels, lacrimal apparatus, and adipose tissue. Each orbit protects the globe, while the supportive tissues therein allow the globe to move in three dimensions (horizontally, vertically, and rotationally).[1][2] The anatomy of the orbit is a complex topic which is imperative for understanding the communication between the eye and the central nervous system as well as the potential for spread of malignancy or infection. Certain surgical emergencies, such as severe fractures, are often quite intricate due to the delicate anatomy of the orbit and its contents.[1][2] The following article will provide insight into the structure and function of the different components of the orbit and will elucidate the importance of understanding orbital anatomy and physiology with relation to pathology.

Structure and Function

The orbits are symmetrical paired structures separated by the nasal cavity and paranasal sinuses. Seven bones form each orbit: frontal, sphenoid, maxillary, zygomatic, palatine, ethmoid, and lacrimal. The orbital roof is formed by the lesser wing of the sphenoid bone and the frontal bone. The lateral wall is comprised of the greater wing of the sphenoid bone and zygomatic bone. The medial orbital wall is comprised of the lacrimal bone, ethmoid bone, maxillary bone and lesser wing of the sphenoid bone. Finally, the orbital floor is comprised of the maxillary, palatine, and zygomatic bones.[1][2] The lateral wall is the strongest of the four orbital walls.[2] The walls of the orbit function as a physical barrier from blunt trauma to the eye, an anchor for muscles and ligaments to attach, and additionally serve as a window for neurovasculature to travel through.

Connective tissue structures within the orbit aid in support and protection of the orbital contents. Orbital fat, which surrounds the extraocular muscles and the globe itself, serves as a cushion and facilitates movement of the eye. The orbital septum is a connective tissue structure that acts as an anterior border between the facial skin and fat and the orbital contents, impeding the spread of infection into the orbit.[2]

The lacrimal gland, a secretory gland consisting of acini and ducts, produces tears and maintains the microenvironment of the eye. The location of the main lacrimal gland is near the lateral aspect of the anterior orbital roof, and it consists of two lobes, the orbital and palpebral lobes. Each lobe contains a duct that opens into the superior conjunctival fornix. The accessory lacrimal gland is smaller and is found within the lamina propria of the conjunctiva, with ducts opening onto the conjunctival surface.[3]

Embryology

Orbital development begins in the third week of embryonic life. The optic pits appear first as an invagination of the diencephalon,  eventually forming the orbit after contributions from many different embryonic cell populations. The cranial neural crest cells are generally thought to be the fundamental cells of orbital embryogenesis, but the complex interactions between these cells have yet to be fully elucidated.[4]

Blood Supply and Lymphatics

The ophthalmic artery is a branch of the internal carotid artery that courses through the optic canal of the sphenoid bone. Once it enters the orbit, the ophthalmic artery has pierced the dura of the optic nerve where it continues anteriorly. It supplies the central retinal artery (which enters the globe), the lacrimal artery (supplying the lateral rectus muscle, lacrimal gland, eyelids, temporal fossa, and cheeks), and the superior and inferior muscular arteries (which supply the superior rectus and superior oblique muscles, as well as the inferior rectus and medial rectus muscles, respectively).

The infraorbital artery, a branch of the maxillary artery, and the infraorbital vein, which drains into the pterygoid plexus, course from the inferior orbital fissure through the infraorbital canal alongside the infraorbital nerve.  These vessels emerge anteriorly from the infraorbital foramen of the maxilla.[1][2]

The superior and inferior ophthalmic veins course through the superior orbital fissure. These veins communicate with the facial veins anteriorly and the cavernous sinus posteriorly. Their exact course is variable, see the "Physiologic Variants" section below.

The eyelids and bulbar conjunctiva utilize the orbital lymphatic system to primarily drain to the preauricular nodes. Controversy exists over the clinical significance of the lymphatic system surrounding the optic nerve and lacrimal gland, however.[3]

Nerves

The infraorbital nerve, a branch of the trigeminal nerve that provides sensation to the maxillary region of the face, courses anteriorly from the inferior orbital fissure. This fissure is located at the posterior aspect of the orbit and meets the infraorbital canal of the orbital floor. The infraorbital nerve courses through the canal and emerges facially from the infraorbital foramen of the maxilla.

The superior orbital fissure allows for the passage of cranial nerves originating from the cranial fossa to enter the orbit. CN III (oculomotor nerve), CN IV (trochlear nerve) and CN VI (abducens nerve) innervate extraocular muscles, while the first division of CN V (ophthalmic branch), provides sensation to the upper face, mucous membranes, and scalp. CN III innervates the superior rectus muscle, medial rectus muscle, inferior rectus muscle, and inferior oblique muscle. CN IV provides innervation to the superior oblique muscle, and CN VI innervates the lateral rectus muscle.

The optic canal is located medially to the superior orbital fissure and transmits the optic nerve (CNII). The optic nerve transmits visual input from the retina to the brain.[1]

Muscles

The levator palpebrae superioris muscle, which receives nerve supply from CN III, elevates the upper eyelid. It is superior to the superior rectus muscle at the roof of the orbit, and these two muscles join in a common aponeurosis anteriorly. This intimate muscular relationship explains why the eye elevates as the upper eyelid is retracted.

The extraocular muscles and their actions are as follows[2]:

  • Superior rectus: elevates, adducts and rotates medially
  • Medial rectus: adducts
  • Inferior rectus: depresses, adducts and rotates laterally
  • Lateral rectus: abducts
  • Superior oblique: depresses, abducts and rotates medially
  • Inferior oblique: elevates, abducts and rotates laterally 

Physiologic Variants

Several variant neural connections exist in the orbit. A significant proportion of these neural connections involve the ophthalmic division of the trigeminal nerve (V1) and extraocular muscles. These communications include branches of V1 merging with: inferior and superior divisions of CN III, CN IV, CN VI, carotid plexus, superior rectus muscle, medial rectus muscle, and levator palpebrae superioris muscle.[5]

The venous system of the orbit is also highly variable, as a dense anastomotic network is typically present. There is no single venous correlate to the ophthalmic artery. Instead, there is a superior ophthalmic vein and a variable inferior ophthalmic vein. The two ophthalmic veins may drain to the cavernous sinus independently or join first before entering the cavernous sinus.[2]

Surgical Considerations

Extreme care must be taken during orbital surgery to preserve the delicate anatomy of the orbit. Entering the orbit surgically can be performed via the potential space between the walls of the orbit anteriorly and the periorbita. Due to the proximity of the orbit to the intracranial cavity, care must be taken to avoid introducing infection through the several foramina and apertures of the orbital walls.[2]

Clinical Significance

The facial veins communicate directly with the ophthalmic veins and serve as a conduit for infection from the face towards the cavernous sinus.[2]

Severe fractures that extend into the optic canal can lead to hemorrhage from the ophthalmic artery or blindness from damage to the optic nerve.

Extraocular Muscle/Neurologic Pathology[2]:

  • Patients with a "down and out" gaze may have oculomotor nerve palsy
  • Patients unable to abduct their eye may have a lateral rectus/CNVI palsy

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Head and Neck, Orbit - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following bones does not contribute to the structure of the orbit?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not a bone of the orbit?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements about orbital anatomy is false?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which area is not supplied by the infraorbital nerve?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Through what structure does the temporal fossa communicate with the orbital cavity?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The cavernous sinus receives the superior ophthalmic vein via which of the following structures?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which two bones form the lateral wall of the orbit?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the communication of the bony orbit with the infratemporal fossa?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The floor of the bony orbit is formed by which of the following bones?

(Move Mouse on Image to Enlarge)
  • Image 4318 Not availableImage 4318 Not available
    Contributed by Wikimedia Commons, Dr. Johannes Sobotta (Public Domain)
Attributed To: Contributed by Wikimedia Commons, Dr. Johannes Sobotta (Public Domain)



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of these structures is not attached to the Whitnall's tubercle?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Head and Neck, Orbit - References

References

Gospe SM 3rd,Bhatti MT, Orbital Anatomy. International ophthalmology clinics. 2018 Spring;     [PubMed]
Turvey TA,Golden BA, Orbital anatomy for the surgeon. Oral and maxillofacial surgery clinics of North America. 2012 Nov;     [PubMed]
Obata H, Anatomy and histopathology of the human lacrimal gland. Cornea. 2006 Dec;     [PubMed]
Voirol JR,Vilensky JA, The normal and variant clinical anatomy of the sensory supply of the orbit. Clinical anatomy (New York, N.Y.). 2014 Mar;     [PubMed]
Sinn R,Wittbrodt J, An eye on eye development. Mechanisms of development. 2013 Jun-Aug     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Ophthalmology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Ophthalmology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Ophthalmology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Ophthalmology. When it is time for the Surgery-Ophthalmology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Ophthalmology.