Physiology, Thyroid


Article Author:
Yasaman Pirahanchi


Article Editor:
Ishwarlal Jialal


Editors In Chief:
Niamh Condon
Terry Tressler


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
12/17/2018 9:26:41 AM

Introduction

The thyroid gland is composed of thyroid follicles which synthesize and store thyroid hormone. The epithelial cells referred to as follicular cells or thyrocytes surround the colloid in the lumen. The ultimo-branchial cells or neural cells accompanying them are the origins of the C-cells in the thyroid gland which secrete the hormone calcitonin.[1]

The hypothalamus releases thyroid-releasing hormone (TRH), which stimulates thyrotrophs of the anterior pituitary to secrete TSH. TSH is released by the anterior pituitary and stimulates the thyroid follicular cells to release thyroxine, T4 (80%) and triiodothyronine, or T3 (20%). The synthesis of thyroid hormones is dependent on the availability of iodide, TSH stimulation, and tyrosine residues on thyroglobulin (TG). When T4 is released into circulation, it can be converted to T3 through the process of deiodination. T4 and T3 can then exert negative feedback on TSH levels with high levels of T3/T4 decreasing TSH and low levels of T3/T4 increasing TSH levels from the anterior pituitary. This article reviews the physiology, biochemistry, and clinical relevance of the thyroid hormones.[2]

Issues of Concern

The thyroid follicular cells within the thyroid gland respond to the thyroid-stimulating hormone (TSH) released from the thyrotrophs of the anterior pituitary. TSH release from the anterior pituitary is modulated by the release of TSH from the hypothalamus.

In primary disease, the disease originates in the thyroid gland. If the thyroid gland is secreting high levels of T3/T4, this will negatively feedback on the anterior pituitary and thus, decrease the secretion of TSH. If the thyroid gland is secreting low levels of T3/T4, the absence of negative feedback on the anterior pituitary will increase TSH secretion from the anterior pituitary.

For secondary disease or central hyperthyroid or hypothyroid disease, the disease originates in the anterior pituitary. If a tumor in the anterior pituitary is secreting excessively high TSH, this will stimulate the thyroid follicular cells to secrete high levels of T3/T4. If the anterior pituitary is secreting low levels of TSH such as in pan-hypopituitarism, this lack of stimulation of thyroid follicular cells will cause them to secrete low levels of T4.[3]

To assess whether thyroid disease is primary or secondary, the TSH must be assayed in concert with T3/T4 levels. If TSH and T3/T4 both increase or both decrease together, this indicates either secondary (central) hypothyroidism or secondary hyperthyroidism. However, if the TSH and T3/T4 change in the opposite directions, this indicates primary thyroid disease.

Cellular

The thyroid gland is composed of thyroid follicles which synthesize and store thyroid hormone. These follicles have lost all luminal connection with other parts of the body and are the primary units of the organ that are responsible for secretion of the thyroid hormone. The epithelium of the normal gland is cuboidal. Blood vessels surround follicular epithelial cells, and the colloid is within the follicular lumen where thyroid hormone is synthesized.

The acinar surface of thyroid parenchymal cells is smooth and is covered with tiny villi and some pseudopods. Each cell has cilium in the follicular lumen. The colloid is eosinophilic, in hyperactive follicles resorption vacuoles scallop the margin of the colloid.

The thyroid epithelial cells organize into thyroid follicles. The follicle lumen consists of a single layer of polarized cells that forms the envelope of a spherical structure with an internal compartment in the follicle lumen. The cell polarity of the gland allows for targeting of the membrane protein on the external side of the follicle facing the blood capillaries or on the internal side of the follicle at the cell-lumen boundary. The cell polarity and the tightness of the follicle lumen which allows for the gathering of substrates and the storage of thyroid hormone modulate thyroid hormone synthesis. [4]

Thyroid hormone receptor subtypes are expressed in different tissues. The thyroid hormone receptor alpha (TRa) is predominantly expressed in the brain, heart, and bone. The thyroid hormone receptor beta (TRb1) is expressed in the liver, kidney, and thyroid. The TRb2 is primarily in the retina, cochlea, and pituitary. Mutations in TRa or TRb can result in disease which is beyond the scope of this review.[5]

Development

The thyroid gland is the embryonically the earliest endocrine structure to appear in human development and appears at embryonic day 22 in humans. The thyroid gland originates from endoderm. Specifically, it is derived from a median endodermal down-growth from the tongue.

After embryogenesis, the physiology of the thyroid is controlled by the requirement for thyroid hormones and the supply of iodide. Thyroid hormone plasma levels and action are monitored by hypothalamic supraoptic nuclei and by thyrotrophs of the anterior pituitary. The expression of transcription factors NK2 homeobox and paired box (PAX 8) are crucial for the proper expression of proteins creating the thyroid gland.[4]

Organ Systems Involved

TSH from the anterior pituitary modulates the release of T3/T4 from thyroid follicular cells. T4 is deiodinated to T3, which is a more potent thyroid hormone. While about 20% of T3 originates from the thyroid gland, 80% of T3 is produced by peripheral conversion via a deiodinase especially type2. More than 99% of thyroid hormone is protein bound to thyroid binding globulin, pre-albumin, and albumin. T3 then binds to its receptor in the nucleus; this activates the transcription of DNA, which promotes translation of mRNA, which activates the synthesis of new proteins. [6]

Function

These new proteins influence many organ systems, promoting growth and bone maturation as well as maturation of the central nervous system (CNS). The basal metabolic rate is increased, with an increase in synthesis of sodium (Na+)-potassium (K+)-ATPase, increase in oxygen consumption, and increased heat production. Metabolism is activated as well, with an increase in glucose absorption, glycogenolysis, gluconeogenesis, lipolysis, and protein synthesis and degradation (net catabolic). These proteins also influence the cardiovascular system by increasing cardiac output by increasing the number of beta-1 receptors on the myocardium such that the myocardium is more sensitive to stimulation by the sympathetic nervous system, thereby increasing contractility. [7]

Mechanism

Iodide from the plasma is concentrated and absorbed by thyroid cells through the sodium/iodide symporter (NIS) on the basolateral membrane of thyrocytes (follicular cells). This process is dependent on sodium and active transport, meaning it couples inward translocation down its electrochemical gradient with inward translocation of iodide against its electrochemical gradient. The iodide has to be delivered to the TG-enriched colloid at the apical surface. This appears to be a function of by another protein pendrin, which is a chloride/iodide exchanger, which promotes iodide efflux in the colloid rich lumen. Within the thyroid follicle, thyroid peroxidase oxidizes, organifies, and couples iodine to tyrosine residues on TG. Defects in any of these steps can result in dyshormonogenetic goiter and congenital hypothyroidism. TG is a glycoprotein of molecular mass of 660kDa that is enriched in tyrosine residues and secreted and stored in the colloid. Initially, thyroid peroxidase forms iodine by oxidation of the iodide ion. When TSH stimulates the thyroid follicle, thyroid peroxidase then organifies, or covalently bonds the tyrosine of the thyroglobulin molecule within to colloid to iodine. If one iodine covalently bonds to tyrosine on the thyroglobulin, this forms monoiodotyrosine (MIT). If two iodine covalently bonds thyroglobulin, this forms diiodotyrosine (DIT). Thyroid peroxidase then couples an MIT with a DIT to form triiodothyronine (T3), or couples a molecule of DIT with another DIT to form thyroxine (T4). After the coupling has occurred, TG is taken up by the thyrocyte for lysosomal degradation releasing T4and T3. DIT and MIT that are uncoupled are deiodinated by a dehalogenase to recycle and conserve any iodide. The thyroid gland secretes thyroxine (T4) and can either convert to T3 in the periphery or reverse T3(rT3). Triiodothyronine (T3) is active, whereas rT3 is inactive. [8]

The hypothalamic-pituitary axis regulates TSH release. The hypothalamus secretes the thyroid releasing hormone (TRH), which stimulates thyrotrophs in the anterior pituitary to secrete TSH. TSH is released by the anterior pituitary and stimulates the thyroid follicular cells to release thyroxine, or T4 (80%) and triiodothyronine, or T3 (20%). When T4 is released into circulation, it can be converted to T3 through the process of deiodination. T4 and T3 can then exert negative feedback on TSH levels, with high levels of T3/T4 decreasing TSH and low levels of T3/T4 increasing TSH levels from the anterior pituitary. T3 is the predominant inhibitor of TSH secretion. Because TSH secretion is so sensitive to minor changes in serum-free T4 through this negative feedback loop, abnormal TSH levels are detected earlier than those of free T4 in hypothyroidism and hyperthyroidism. There is a log-linear relationship between T3/T4 and TSH with minor changes in TH results in major changes in TSH. [9]

Related Testing

Thyroid function is predominantly monitored through analysis of TSH, as it is the best first-line test in both the evaluation of hypothyroidism and hyperthyroidism since the test is more reliable than plasma T3/T4 which fluctuates.[10] Testing for TSH is a first-line screening test for both hypothyroidism and hyperthyroidism.[11] If values are outside the reference range of 0.4 to 4.5 uIU/ml, measure T4 if TSH is elevated, or measure T4 and T3 if TSH is decreased.[12] In hypothyroidism, if the cause is primary (originating in the thyroid gland itself), high TSH would be detected, and this is the best first-line test.[13] This would be accompanied by low total T4, low free T4, hypercholesterolemia (decreased LDL receptor synthesis), and elevated creatinine kinase levels and thyroid antibodies in Hashimoto disease.[14]

Pathophysiology

Graves' disease can cause hyperthyroidism in that there is an increased thyroid-stimulating immunoglobulin, thyroid neoplasm (for example, toxic adenoma), excess TSH secretion, or exogenous T3 or T4. Treatment for this should include propylthiouracil (which inhibits peroxidase enzyme and thyroid hormone synthesis), thyroidectomy, radioiodine therapy which destroys the thyroid, and beta-adrenergic blocking agents (adjunct therapy).[15]

The Jod-Basedow Effect occurs when excessive iodine loads induce hyperthyroidism. It is observed in hyperthyroidism caused by Graves’ disease, toxic multinodular goiter, and toxic adenoma. In these patients, the large iodine doses from dietary changes, contrast administration, and iodine-containing medication such as amiodarone can cause symptomatic thyrotoxicosis.[16]  

Symptoms of hypothyroidism include decreased basal metabolic rate, weight gain, and nitrogen balance, decreased heat production, cold sensitivity, decreased cardiac output, hypoventilation, lethargy and mental slowness, drooping eyelids, myxedema, growth retardation, mental retardation in perinatal patients, and goiter. When a patient exhibits these symptoms, an increased TSH would indicate negative feedback if the primary defect is in the thyroid gland; while a decreased TSH would be indicative of a defect in the hypothalamus or anterior pituitary. Hypothyroidism can be caused by thyroiditis (autoimmune or Hashimoto thyroiditis), surgery for hyperthyroidism, iodine-deficiency, congenital (cretinism), or decreased TRH or TSH. Treatment for this should include thyroid hormone replacement.[17]

The Wolf-Chaikoff effect occurs in patients with autoimmune thyroiditis when increasing doses of Iodine initially increases synthesis of thyroid hormone, but the synthesis of thyroid hormone ceases when Iodine concentration increases further. In patients with functional thyroid tissue, the thyroid can counter this decrease in iodine through the release and leakage of iodine. However, in patients with decreased functional thyroid tissue due to autoimmune thyroiditis, the thyroid is unable to adapt and compensate for the decrease in thyroid hormone synthesis as Iodine increases further does not occur, causing the patient to become hypothyroid. [16]

Clinical Significance

Dyshormonogenesis can result in goitrous congenital hypothyroidism. All of the disorders are generally autosomal recessive.

A defect in iodide uptake due to a mutation in NIS can result in hypothyroidism, goiter and mental impairment. Classically tracer uptake is reduced, and TG is increased with low T4 and high TSH in the diagnostic workup.[18]

TPO mutations can result in congenital hypothyroidism with goiter given the crucial role of this enzyme in TH biosynthesis.[19]

Pendred syndrome results from mutations in the Pendrin gene resulting in sensorineural deafness, goiter and thyroid dysfunction in the second decade.

Mutations in the TG gene can result in congenital hypothyroidism with low levels of TG.

DUOX2 is crucial for the generation of hydrogen peroxide and can result in congenital hypothyroidism.[18]

Iodotyrosine deiodinase controls the reuse of iodide for thyroid hormone synthesis, and mutations in DEHALI gene lead to a deficiency in this enzyme. Patients have normal thyroid hormone levels at birth but develop congenital hypothyroidism. [20]

The MCT8 gene is highly expressed in the brain and is responsible for expressing the iodine transporter in the cell membrane that brings iodine into the cell. MCT8-specific thyroid hormone cell-membrane transporter deficiency is X-linked recessive thus mostly occurs in males and is diagnosed by high serum 3,3’,5-triiodothyronine (T3) concentration and low serum 3,3’,5’ triiodothyronine (reverse T3 or rT3) concentration. It is characterized by severe cognitive deficiency, infantile hypotonia, diminished muscle mass, generalized muscle weakness, spastic quadriplegia that increases in severity, joint contractures, dystonic or athetoid movement with paroxysms or kinesigenic dyskinesias, and seizures. [21]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Thyroid - Questions

Take a quiz of the questions on this article.

Take Quiz
Thyroid stimulating hormone (TSH) released by the anterior pituitary increases thyroid hormone release from thyroid follicular cells. Which of the following correctly describes the relationship between plasma TSH concentration and basal metabolic rate during blockade of the hypothalamohypophysial portal vessels?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following would not be causative factors for an elevation in T4 levels?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17 year old female is 28 weeks pregnant. Thyroid tests are drawn and show normal TSH, decreased T3 resin uptake, normal FTI, normal free T4, and increased total T4. What is the best interpretation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Once thyroxine (T4) is released by the thyroid gland, it is converted to active triiodothyronine (T3) in the periphery. What is the normal T3 to T4 ratio?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following does not affect the thyroid?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements is false?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient with hypothyroidism is initiated on thyroxin injections. What occurs after the thyroxin injection?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Thyroid - References

References

Stoupa A,Chaabane R,Guériouz M,Raynaud-Ravni C,Nitschke P,Bole-Feyset C,Mnif M,Ammar Keskes L,Hachicha M,Belguith N,Polak M,Carré A, Thyroid Hypoplasia in Congenital Hypothyroidism Associated with Thyroid Peroxidase Mutations. Thyroid : official journal of the American Thyroid Association. 2018 May 23     [PubMed]
Nussey S,Whitehead S, . 2001     [PubMed]
Esfandiari NH,Papaleontiou M, Biochemical Testing in Thyroid Disorders. Endocrinology and metabolism clinics of North America. 2017 Sep     [PubMed]
Sheehan MT, Biochemical Testing of the Thyroid: TSH is the Best and, Oftentimes, Only Test Needed - A Review for Primary Care. Clinical medicine     [PubMed]
Koulouri O,Moran C,Halsall D,Chatterjee K,Gurnell M, Pitfalls in the measurement and interpretation of thyroid function tests. Best practice     [PubMed]
Stockigt J, Clinical Strategies in the Testing of Thyroid Function null. 2000     [PubMed]
Mincer DL,Jialal I, Thyroid, Hashimoto Thyroiditis null. 2018 Jan     [PubMed]
Chakera AJ,Pearce SH,Vaidya B, Treatment for primary hypothyroidism: current approaches and future possibilities. Drug design, development and therapy. 2012     [PubMed]
Mariotti S,Beck-Peccoz P, Physiology of the Hypothalamic-Pituitary-Thyroid Axis null. 2000     [PubMed]
Gupta V,Lee M, Central hypothyroidism. Indian journal of endocrinology and metabolism. 2011 Jul     [PubMed]
Medici M,Visser TJ,Peeters RP, Genetics of thyroid function. Best practice     [PubMed]
Brent GA, Mechanisms of thyroid hormone action. The Journal of clinical investigation. 2012 Sep     [PubMed]
Rousset B,Dupuy C,Miot F,Dumont J, Chapter 2 Thyroid Hormone Synthesis And Secretion null. 2000     [PubMed]
Dumitrescu AM,Fu J,Dempsey MA,Refetoff S, MCT8-Specific Thyroid Hormone Cell-Membrane Transporter Deficiency null. 1993     [PubMed]
Moreno JC,Klootwijk W,van Toor H,Pinto G,D'Alessandro M,Lèger A,Goudie D,Polak M,Grüters A,Visser TJ, Mutations in the iodotyrosine deiodinase gene and hypothyroidism. The New England journal of medicine. 2008 Apr 24     [PubMed]
Leung AM,Braverman LE, Consequences of excess iodine. Nature reviews. Endocrinology. 2014 Mar     [PubMed]
Blick C,Jialal I, Thyroid, Thyrotoxicosis null. 2018 Jan     [PubMed]
Stathatos N, Thyroid physiology. The Medical clinics of North America. 2012 Mar     [PubMed]
Grasberger H,Refetoff S, Resistance to thyrotropin. Best practice     [PubMed]
Hannoush ZC,Weiss RE, Defects of Thyroid Hormone Synthesis and Action. Endocrinology and metabolism clinics of North America. 2017 Jun     [PubMed]
Maenhaut C,Christophe D,Vassart G,Dumont J,Roger PP,Opitz R, Ontogeny, Anatomy, Metabolism and Physiology of the Thyroid null. 2000     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-Maternal and Fetal. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-Maternal and Fetal, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-Maternal and Fetal, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-Maternal and Fetal. When it is time for the Surgery-Maternal and Fetal board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-Maternal and Fetal.