Postconcussive Syndrome


Article Author:
Cara Permenter


Article Editor:
Andrew Sherman


Editors In Chief:
Sebastiano Cassaro
Joseph Lee
Tanya Egodage


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
11/28/2018 4:15:26 PM

Introduction

Traumatic brain injury (TBI) occurs in patients of all age groups and is a significant public health issue. In the United States, 1.5 million TBIs occur annually, 75% of TBIs are classified as mild, and costs are generated of $17 billion each year. Most patients that suffer from TBI will have spontaneous resolution of symptoms, but for some patients, symptoms may linger and negatively affect daily cognitive function.  Post-concussive syndrome (PCS) demarcates the constellation of symptoms seen most often in prolonged mild TBI. Clinical criteria for PCS is outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).[1]

PCS is a constellation of physical, cognitive, behavioral, and emotional symptoms occurring after TBI. These symptoms include a headache, fatigue, vision changes, disturbances in balance, confusion, dizziness, insomnia, and difficulty with concentration. Approximately 90% of concussion symptoms are transient, with symptoms resolving within 10 to 14 days but may linger for weeks. Persistent PCS occurs when symptoms persist past 3 months. Fifteen percent of mild TBI patients will suffer from PCS, and a small minority of those patients will experience persistent PCS requiring further evaluation and treatment.[2][3]

Research has shown that mild TBI resulting in persistent PCS has lasting effects on cognition, memory, learning, and executive function. Patients who suffer more than one brain injury are at increased risk for PCS. Due to limited diagnostic tools, those permanent changes in executive function can go undocumented. Thus, the 15% incidence of PCS is an underestimation of the true incidence.[2]

Etiology

Most cases of PCS occur in patients with mild TBI but can occur with TBI of any severity. TBI results from trauma, assault or sports-related injuries. Mild TBI is defined as a Glasgow coma score (GCS) of 13 to 15 and is further sub-grouped as complicated versus uncomplicated. Complicated mild TBI comprises symptoms of a concussion with associated head CT abnormalities, including hematoma, subarachnoid or subdural bleed, midline shifts, or fractures. Uncomplicated mild TBI presents with a normal head CT. Patients with uncomplicated mild TBI are more likely to have a resolution of symptoms in less than 3 months. Patients with complicated TBI or more than one TBI are more likely to suffer from PCS or persistent PCS. Other risk factors include female gender, age, psychiatric history, or a history of chronic pain syndromes.[3]

Epidemiology

Current studies and analysis show that women are at greater risk for persistent PCS. Women are more likely to endorse a headache, irritability, fatigue, and concentration problems. Increases in age are also associated with a higher risk of PCS. Among minors, no comparisons have been made with the symptoms endorsed. Female minors are more likely to endorse symptoms while male minors are more likely to experience loss of consciousness at the time of injury and seek medical attention in an emergency department. It is also thought minors are less likely to experience PCS due to increased neuroplasticity when compared to adults. These studies were conducted in sports-related cases, but experts believe that similar trends occur in any mechanism of TBI.[1]

Pathophysiology

The pathophysiology of concussion includes a combination of metabolic, physiology and microstructural injuries to the brain. Symptoms consistent with PCS result from autonomic nervous system damage. This damage occurs to the white matter tracks between cortical control centers and vagal nerve control via the spinal cord. This affects both the sympathetic and parasympathetic nervous systems. As a result, patients will often experience symptoms consistent with depression. Autonomic nervous system damage also causes difficulties with control of cerebral blood flood, blood pressure and heart rate leading to dizziness, headache, confusion, difficulty with concentration, and orthostatic intolerance. Decreases in cerebral blood flow at rest in the immediate post-injury period can account for PCS symptoms outlined above. Also, increased cerebral blood flow post-injury can cause headache, vision changes, and dizziness leading to exercise intolerance. Heart rate variability due to damage in the vagal nerve tracts results in disproportionate increases in blood pressure and heart rate during exercise causing early fatigue.[4]

History and Physical

A thorough history and physical exam are crucial in the evaluation of PCS patients. Mechanism of injury, date of injury, loss of consciousness at the time of injury, the number of times injured, and reported symptoms are all critical in the initial and subsequent evaluation. Past medical history is especially helpful for identifying patients are at increased risk of PCS. Important past medical history to document includes headache history, history of depression, anxiety or mood disorders, and chronic pain history. The physical exam should include a full neurological exam including evaluation of cranial nerves, visual acuity, reflexes, strength, proprioception, and sensation, and should be completed with each encounter.[1][4]

Evaluation

Evaluation of PCS requires recognition of residual symptoms following TBI. Due to the ambiguity of symptoms, recognition takes time, and thus, treatment is often delayed. Concussion refers to the condition that resolved within 30 days of injury and symptoms identified during this time attributed to the concussion or mild TBI before the diagnosis of PCS is made. As outlined in the DSM-IV, PCS is diagnosed with the presence of cognitive deficits in attention or memory and at least 3 of the following:

  • Fatigue
  • Sleep disturbance
  • Headache
  • Dizziness
  • Irritability
  • Affective disturbance
  • Apathy or personality changes that persist for 3 months or longer. 

The International Classification of Disease-10 defines PCS as the symptoms outlined above persisting for longer than 3 weeks, is more general and encompasses more patients.  Most patients recover in the first 7 to 10 days following injury and will require no further evaluation.

The initial evaluation will include a thorough history and physical exam. Initial evaluation can occur on the scene in sports-related cases, in the emergency department (ED) during trauma or emergency, or by a primary care physician on an outpatient basis in patients who do not seek medical care at the time of injury. Highlighted areas include clearance of the cervical spine (if emergency), mental status, cranial nerves (including visual acuity), balance, strength, proprioception, sensation, and reflexes. Patients should be screened with vestibular-ocular motor screening exam to be repeated once the patient becomes asymptomatic.

Any neurological or mental status deficits should be documented regarding time lapsed from the time of injury. The evaluation may also include imaging if completed in the emergent setting via head CT. Get an MRI in patients who continue to endorse symptoms at greater than 1-month post-injury. Imaging allows for the evaluating physician to rule out other etiologies that may be responsible for symptoms before referral for symptom-specific therapies.[4]

Treatment / Management

In 85% to 90% of cases, mild TBI is self-limited and does not progress to PCS.  In the minority of cases that do not recover to baseline at 4 weeks post-injury, management, and physiological treatment is important in patients returning to baseline mental and physical activity.  Physical and cognitive rest is recommended for at least the first 24 to 48 hours post-injury as outlined by Zurich guidelines. Patients are only to return to play or usual activity once symptom-free at rest. It has been shown in studies reviewed that patients who rested for 2 days versus 5 days returned to baseline more quickly.

For patients continuing to endorse visual and balance symptoms the vestibular-ocular motor screening tool may be completed in the outpatient setting. By using the screening tool to identify the root cause of a patient’s residual post-concussive symptoms, the provider can prescribe active forms of therapy, which include cervical physical therapy, vision therapy or vestibular rehabilitation.

Lastly, Zurich guidelines acknowledge that patients with PCS who engage in low-level exercise recover faster. The Buffalo concussion treadmill test assesses when patients may resume full activity by measuring the patient’s ability to achieve target heart rate without experiencing symptoms or early exhaustion. Once patients can achieve age-related maximal heart rate and exercise without symptoms for at least 20 minutes for 2 to 3 consecutive days, the patient is deemed physiologically recovered. For athletes, this may not correlate to return to play but allows the athlete to train aerobically until other post-concussive symptoms resolve.[4]

Enhancing Healthcare Team Outcomes

Traumatic brain injury is a hallmark injury of veterans and athletes. Most studies reviewed centered on these specific patient populations presenting difficulties in using results for the general patient population. Overall, mild TBI can have lasting effects on neurocognition despite the mild nature of the disease process.  If symptoms of mild TBI persist for greater than 4 weeks, patients are diagnosed with PCS and require further intervention. The difficulty of identifying PCS is that symptoms of PCS are ubiquitous in the population and can be due to other causes such as psychiatric disorders, headache syndromes and chronic pain syndromes as outlined in previous sections of this article. An interprofessional approach to the care of mild TBI patients and those that develop PCS is necessary for the care of these patients.

In a randomized control trial which looked at veterans returning to the workforce, studied the benefits of an online evaluation tool CogSMART when used with enhanced, supported employment to place veterans with varying degrees of mild TBI and comorbid psychiatric disorders in jobs of varying cognitive demand. The study showed benefit with a rapid return to baseline and decreased prevalence of PCS in patients that used CogSMART with enhanced, supported employment when compared to groups that did not use CogSMART with enhanced, supported employment.

In veterans with comorbid psychiatric disorders, psychiatric care is necessary for a more rapid recovery of PCS symptoms. Specifically, treatment of PTSD is often required in patients with mild TBI to facilitate recovery. Patients that also suffer from chronic headaches and pain syndromes will require additional treatment from specializing physicians to facilitate the recovery. In athletes, reviews completed by sports trainers presented data that early exercise aided in the recovery of mild TBI and prevention of PCS. The benefit comes from decreased incidence of depression, anxiety, and sleep-related symptoms by allowing the athlete safe return to exercise and conditioning.

In the prevention and treatment of PCS in patients that have suffered mild TBI, patient education is key to successful recovery. Physicians should educate patients on returning to work or school with a resolution of symptoms at rest. Patient education should include that extended bed rest and delayed cognitive rest can lead to worse outcomes. Addressing patient comorbidities with treatment also helps patients return to baseline in most cases.[5] (Level II)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Postconcussive Syndrome - Questions

Take a quiz of the questions on this article.

Take Quiz
A 17-year-old male presents 2 weeks after a concussion sustained during a football game. He did not lose consciousness but endorsed confusion for 10 minutes. In the emergency department, CT of the brain was normal. On evaluation, he complains of continued headaches, nausea, and occasional dizziness. He seems depressed and reports that he has difficulty concentrating, making school work difficult. He denies a history of previous concussion. The neurologic exam is normal. What is true regarding this patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
During a football game, an individual takes a direct blow to the helmet. On initial examination, the patient has a Glasgow coma scale (GCS) score of 14 suggesting concussion. While educating the athlete and his family, the provider should discuss expected adverse effects in the following few weeks. Which of the following symptoms are most consistent with postconcussive syndrome?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old female presents to the clinic for headache, nausea, dizziness, and photophobia that have persisted for 5 weeks after a fall during a basketball game at school. She reports that she fell and hit her head on the floor but did not experience loss of consciousness. She reports that she felt “dazed” and took a few minutes before returning to play. Shortly after returning to the game, she began to experience a headache and dizziness and returned to the sideline. She has not tried to play basketball or run since that time. She did not seek medical attention after the incident. Her sports trainer told her to see a healthcare provider, and she was diagnosed with having sustained a concussion. She endorses a history of a previous concussion that occurred 6 months before this injury, but states she “was back to normal by the end of the week.” Her initial evaluation in the clinic today reveals 12 positive symptoms on SCAT5 (Sport Concussion Assessment Tool fifth Edition) and is VOMS (Vestibular/Ocular-Motor Screening) positive for concussion. What would be your recommendation at this time?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which patient is most likely to suffer from postconcussive syndrome?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is true regarding mild traumatic brain injury (TBI)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Postconcussive Syndrome - References

References

Preiss-Farzanegan SJ,Chapman B,Wong TM,Wu J,Bazarian JJ, The relationship between gender and postconcussion symptoms after sport-related mild traumatic brain injury. PM     [PubMed]
McInnes K,Friesen CL,MacKenzie DE,Westwood DA,Boe SG, Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PloS one. 2017     [PubMed]
Dikmen S,Machamer J,Temkin N, Mild Traumatic Brain Injury: Longitudinal Study of Cognition, Functional Status, and Post-Traumatic Symptoms. Journal of neurotrauma. 2017 Apr 15     [PubMed]
Leddy J,Baker JG,Haider MN,Hinds A,Willer B, A Physiological Approach to Prolonged Recovery From Sport-Related Concussion. Journal of athletic training. 2017 Mar     [PubMed]
Twamley EW,Thomas KR,Gregory AM,Jak AJ,Bondi MW,Delis DC,Lohr JB, CogSMART Compensatory Cognitive Training for Traumatic Brain Injury: Effects Over 1 Year. The Journal of head trauma rehabilitation. 2015 Nov-Dec     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Surgery-General. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Surgery-General, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Surgery-General, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Surgery-General. When it is time for the Surgery-General board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Surgery-General.