Anatomy, Shoulder and Upper Limb, Metacarpophalangeal Joints


Article Author:
Dillon Benson


Article Editor:
Matthew Varacallo


Editors In Chief:
Sisira Reddy
Joseph Nahas
Chokkalingam Siva


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
2/17/2019 5:35:17 PM

Introduction

The metacarpophalangeal (MCP) joint is a diarthrodial joint where the large convex head of the distal aspect of the metacarpal articulates with the concave shaped proximal aspect of the phalange. The joint serves as the transition between the palm and the fingers. Externally, the MCP joint is seen as the “knuckle,” in layman’s terms, which is the prominent metacarpal head. The joint provides a combination of stability and flexibility allowing for the dexterity and complexity of movement required of the hand.

Structure and Function

The MCP joint plays a critical role in the functionality of the human hand. The MCP joint of the thumb is structurally similar in both its structure and function with the MCP joints of the other digits; however, differences exist and will be noted where relevant. The thumb MCP joint is a hinge joint allowing only 80 to 90 degrees of flexion with minimal extension, adduction, or abduction.[1] The MCP joint of digits 2 to 5 is a shallow ball and socket joint which enables flexion, extension, abduction, adduction, and limited circumduction. In addition to the difference in the attachment sites of muscles, the significant difference in the range of motion between the MCP joints of the thumb and fingers is also due to the shape of the metacarpal head. In the thumb, the metacarpal head is typically flatter which leads to decreased range of motion. That being said, there is significant variability in thumb ROM because some individuals have more spherical metacarpal heads.[2] This has been found to translate to increased MCP joint ROM in these individuals.[1]

The shape of the MCP joint provides minimal intrinsic stability. The stability that exists is derived from the ligaments, capsule, and adjacent musculotendinous balance, with the ligaments providing the bulk of stability.[3]

The volar plate is a dense fibrocartilaginous thickening of the palmar aspect of the MCP joint capsule. The volar plate’s primary function is to prevent hyperextension of the joint.[3] It originates on the metacarpal head and inserts onto the adjacent proximal phalange. The proximal third of the palmar plate is thinner than the distal portion, and in the thumb, has two sesamoid bones embedded in it.[4] The sesamoids, connected via the phalangoglenoid ligament, work in conjunction with the palmar plate and A1 annular ligament to form a synovial sheath for the flexor pollicis longus tendon, thereby stabilizing it as it passes over the MCP joint. The palmar plates of digits 2 through 5 are connected by the deep transverse metacarpal ligament providing stabilization and preventing separation between metacarpal heads.[5]

 A collateral ligament, comprised of a proper collateral ligament and an accessory collateral ligament, is present on both the radial and ulnar aspect of each MCP joint. The proper collateral ligaments are strong cord-like structures which act as the primary stabilizers of the MCP joint. The proper collateral ligaments originate from the lateral-dorsal aspect of the metacarpal head and transverse the joint to insert onto the volar margin of the adjacent proximal phalange. The accessory collateral ligaments originate more volar and proximal than the proper collateral ligament and fan outward in an oblique direction to insert onto the distal third of the volar plate.[3] Due to the difference in orientation of these two collateral ligaments as well as the unique ovoid shape of the metacarpal head, the proper collateral ligaments are taut in joint flexion while accessory collateral ligaments are taut in joint extension.[6] Additionally, these differences result in a cam effect permitting a substantial range of motion (ROM) in the flexion-extension axis, as well as adduction-abduction.[5]

The joint capsule surrounds the MCP joint blending with the palmar plate and the collateral ligaments. It functions to stabilize the joint dorsally and is taut in joint flexion.

Sagittal bands arise from the plantar plate and wrap around the MCP joint most superficially creating a “lasso” around the underlying extensor muscle tendon. This structure allows the extensor muscle to extend the MCP joint despite minimal attachment to the proximal phalanx.

Embryology

Three primary signaling centers, the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the nonridged ectoderm, interact in a well-coordinated manner to direct appropriate developmental axis formation for the upper extremity.[7] By the end of the fourth week of embryonic development, four limb buds arise from the ventrolateral surface of the developing embryo. The limb buds consist of somites and mesenchyme, derived from the lateral plate mesoderm, enclosed by a layer of cuboidal ectoderm.[8] The cells from the lateral plate mesoderm will eventually differentiate into the extremity’s connective tissue. Limb musculature derives from the paraxial mesoderm cells of the somites that had migrated into the limb buds. The ectoderm layer at the distal tip of the developing limb eventually enlarges to form the AER. The AER induces neighboring mesenchymal cells to remain undifferentiated and continue proliferating while more proximal limb cells further away from the AER begin to differentiate into connective tissue and muscle cells.

By the end of the sixth week of embryonic development, chondrocytes have formed a basic construct of hyaline cartilage that will eventually ossify into the bones of the upper extremity through the process of endochondral ossification. The MCP joints are formed in this cartilage when factor signaling causes chondrogenesis to cease locally, ultimately resulting in the formation of a joint cavity. Mesenchymal cells adjacent to the joint cavity subsequently differentiate into the joint capsule. By the ninth week, the diaphysis’s of the metacarpal and proximal phalanges are ossified; however, the epiphyses are ossified postnatally.[8]

Blood Supply and Lymphatics

Blood is supplied to the hand via the ulnar and radial arteries which anastomose in the superficial palmar and deep palmar arches. These arches have numerous branches, many of which supply the MCP joints including princeps pollicis artery, the radial artery of the index finger, common palmar digital arteries, and the dorsal and palmar metacarpal arteries.[9]

Lymphatic drainage for the hand occurs via superficial channels that run alongside the cephalic and basilic veins as well as deep channels that course with the arteries. These lymphatics drain to lymph nodes within the elbow, including the cubital and epitrochlear lymph nodes, before ultimately draining into the axillary or infraclavicular lymph nodes.

Nerves

The muscles crossing the MCP joint receive innervation via branches from the three main nerves of the forearm: median, ulnar, and radial. The MCP joints receive their innervation from the posterior interosseous nerve, the deep terminal branch of the ulnar nerve and palmar branches of the median nerve.

Muscles

Both intrinsic and extrinsic muscles cross the MCP joint. Intrinsic muscles are those originating within the hand while extrinsic muscles are those that the outside the hand. The MCP joint may also be grouped by their respective movement type:[10][11][12][13]

Extension

  • Digits 2 to 5: Extensor digitorum, extensor indicis (second digit), extensor digiti minimi (fifth digit)
  • Thumb: Extensor pollicis longus, Extensor pollicis brevis

Flexion

  • Digits 2 to 5: Flexor digitorum superficialis, flexor digitorum profundus, Flexor digiti minimi brevis (fifth digit), Lumbricals*
  • Thumb: Flexor pollicis longus, Flexor pollicis brevis*

Abduction

  • Digits 2 to 4: Dorsal Interossei*
  • Fifth digit: Abductor digiti minimi
  • Thumb: Abductor pollicis longus, Abductor pollicis brevis*

Adduction

  • Digits 2 to 5: Palmer interossei*
  • Thumb: Adductor pollicis* 

Of note, both muscles of adduction also assist in flexion of their respective MCP joints.

*Intrinsic muscles

Surgical Considerations

Surgical Repair of Acute Ulnar Collateral Ligament Injury of the Thumb

Surgical repair of the UCL is indicated for acute injury to the ligament resulting in a complete tear. Injuries that have been present for greater than 3 to 6 weeks typically require surgical reconstruction; however, there is no consensus on whether surgical reconstruction or repair of the UCL ligament is preferred for either acute and chronic UCL injury of the thumb. The clinical presentation of UCL injury is discussed in further detail below. MCP joint laxity is assessed to determine if there is a complete UCL tear. This is done by applying valgus stress to the MCP joint while holding it in mild extension. If greater than 35 degrees of radial deviation is present or there is more than a 20-degree difference from the uninjured thumb, then a complete UCL tear is confirmed.[14]

Surgical exposure is gained via an incision on the dorsal aspect of the thumb MCP joint. Expose the joint capsule by vertically incising the adductor aponeurosis ulnar to the extensor pollicis longus.[15] The torn UCL is identified and carefully dissected from adjacent tissue ensuring maintenance of its metacarpal attachment. The location of proximal phalanx selected for UCL reattachment is cleaned to assist in ligament attachment. The distal end of the UCL ligament is then attached to the proximal phalanx by either bone anchors with pre-attached suture or tunneling suture through the bone.[16] Both methods require temporary MCP joint fixation with a percutaneous, transarticular Kirschner wire.[15] Following closure, a splint is worn for 6 weeks postoperatively at which time physical therapy is begun. Full return to activity is typically achieved after 16 weeks.

Open Reduction for MCP Joint Dislocation

Open reduction is indicated for irreducible MCP joint dislocations. The clinical findings of MCP joint dislocation are discussed below. In complex dislocations, the volar plate is either entrapped between the joint surfaces or has maintained its proximal phalanx attachment and is lying on the dorsal aspect of the metacarpal shaft. Also seen in complex dislocations, the metacarpal head may become buttonholed between ligaments and tendons preventing closed reduction.[15]

To perform an open reduction of the MCP joint, a dorsal, volar, or combined approach may be used to obtain proper exposure.[17] However, the dorsal approach is typically the preferred technique. An example of a situation where a combined approach may be needed is for a dislocation that is not treated acutely. The dorsal approach is more likely to avoid damage to the digital neurovascular structures and provides the additional benefit of allowing for fixation of metacarpal fractures if present.[17] Following the incision on the dorsal aspect of the MCP joint, the extensor mechanism is identified and split allowing exposure of the joint capsule. Dissection and incision of remaining intact dorsal joint capsule will allow visualization of the volar plate, metacarpal head, and displaced proximal phalanx.[17] The metacarpal head may be deep to the dorsally displaced proximal phalanx or buttonholed making it unable to be visualized initially. The dislocation is then reduced by holding the wrist in flexion to decrease tension within the flexor tendons and then applying gentle force to the proximal phalanx in the distal and palmar direction. The volar plate may need to be vertically incised to allow for reduction.[18] Assess joint stability by taking the MCP joint through a full passive range of motion.[19] Once joint stability is ensured, the dorsal capsule and extensor mechanism are repaired, and the skin is closed. A splint is used to immobilize the MCP joint in ten degrees of flexion. Full return to activity is typically achieved after 12 weeks.

MCP Joint Arthroplasty

Several joint prostheses types are available for MCP joint arthroplasty; however, silicone implant arthroplasty remains the gold standard to which other MCP joint arthroplasty are compared. Other small joint arthroplasty options include pyocarbon implant arthroplasty and autologous small joint transfer.[20]

The primary indication for silicone implant MCP joint arthroplasty is arthritis (osteoarthritis, rheumatoid arthritis, post-traumatic type), and can treat the resultant joint deformations including complex joint dislocations, volar subluxation, and severe articular cartilage damage. Pyocarbon implant arthroplasty is unable to treat RA affected joints as it relies on significant soft tissue support to bolster the implant.[20]

Silicone implant arthroplasty begins with a transverse incision made on the dorsal aspect of the metacarpal neck while preserving the superficial neurovascular structures. Next, the extensor tendons are bluntly dissected to reveal the underlying joint capsule. With the joint capsule exposed, a release of the sagittal band is performed, followed by a release of the collateral ligaments, and finally a release of the joint capsule.[21] The metacarpal head is then resected. The medullary canal of the proximal phalanx is broached, followed by the associated metacarpal bone. An implant is then inserted, and the capsule is closed to keep the implant in place. This implant will serve as the MCP joint. Post-operative management consists of 12 weeks of splinting, and physical therapy beginning at 6 weeks.

Silicone implant arthroplasty provides pain relief; however, only marginal improvements in MCP joint range of motion are seen postoperatively.[22]

Clinical Significance

Rheumatoid Arthritis

While both osteoarthritis and rheumatoid arthritis can affect the MCP joint, rheumatoid arthritis (RA) is classically associated with a predilection for MCP involvement. RA is a chronic systemic autoimmune disease characterized by polyarthropathy and resultant cartilage and bone destruction.

Over time, the chronic synovitis of RA leads to the deposition of granulation tissue resulting in the formation of a pannus. Progressively, the myofibroblasts within the pannus contract, distorting the natural joint alignment. This process is classically seen in the MCP joint as an ulnar deviation and in the PIP joint as the swan neck deformity. For RA patients presenting with ulnar deviation at the MCP joint, treatment consists of several operative options including:

  • Small joint synovectomy is indicated for early joint disease[23][24]
  • MCP arthroplasty is indicated for advanced joint disease
  • MCP joint arthrodesis is indicated if the thumb MCP joint is affected without IP joint involvement[24]

MCP Joint Dislocation

Dislocations of the MCP joint can occur on either the volar or dorsal aspect of the joint and are classified as either simple or complex. Dorsal dislocations are significantly more common, and occur secondary to hyperextension of the joint, most commonly from a fall on an outstretched hand.[25] In comparison, volar dislocations occur from hyperflexion or hyperextension of the joint. The presence of the volar plate and strong lateral ligaments help to explain why the majority of MCP joint dislocation occurs dorsally, as opposed to lateral or volar dislocation. Simple dislocations are those that are capable of being reduced by closed reduction. Complex dislocations, however, are not amenable to closed reduction.[26] During hyperextension, the palmar plate tears from its point of origin on the metacarpal neck. In the case of complex dislocations, the palmar plate becomes interposed in the dislocated joint. The MCP joint of the second digit is the joint most commonly involved in simple and complex dislocations.

Physical exam findings vary depending on whether the dislocation is volar or dorsal. For dorsal dislocations, the joint will appear somewhat hyperextended due to palmar plate and joint capsule damage. Upon inspection, complex dislocations counterintuitively often appear to have less displacement because the proximal phalanx can be seen resting on the dorsal aspect of the metacarpal head.[25] Evidence of MCP joint dislocation is best viewed on a true lateral radiograph, which shows a widened joint space due to the interposition of the volar plate. Non-operative management is performed with closed reduction with anesthesia for simple dislocations, while complex dislocations are managed surgically by open reduction.

Ulnar Collateral Ligament Injury of the Thumb [27]

Injury of the ulnar collateral ligament (UCL) of the MCP joint of the thumb is commonly referred to as gamekeeper’s or skier’s thumb. Gamekeeper’s thumb refers to chronic repeated injuries to the UCL that results in UCL attenuation resulting in chronic joint instability, while Skier’s thumb refers to acute UCL injury such as when a skier falls on a ski pole causing radial deviation of the thumb.[28] , occurs primarily secondary to hyperabduction of the MCP joint. Hyperabduction causes separation of the UCL from the base of the first phalanx of the thumb. Often, as the UCL tears, a section of the adductor pollicis aponeurosis may become caught between the avulsed ligament and its previous site of bony attachment. This is known as a Stener lesion and prevents the ligament from healing without surgical intervention.[28] Stener lesions are present in 64% to 87% of complete UCL tears, which is why surgical repair is typically the treatment for the complete UCL tears.[28]  

On inspection of a patient with this injury, the torn ligament may present as a mass on the ulnar aspect of the MCP joint. Instability of the joint will be noted by applying radial-directed pressure to the joint. If instability is noted with the thumb in a neutral position, this is indicative of damage to only the proper UCL. If greater than 35 degrees of radial deviation is present, upon applying valgus stress while holding the MCP joint in extension, or there is more than a 20-degree difference from the uninjured thumb then a complete UCL tear is confirmed.[28] Treatment for partial tears with minimal valgus and varus instability is non-surgical with 6 weeks of immobilization.[28] Indications for operative management include acute injuries with significant joint laxity, the presence of a Stener lesion, and chronic injury. Operative management involves either ligament repair or reconstruction, depending on injury severity and chronicity.


  • Image 8558 Not availableImage 8558 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Shoulder and Upper Limb, Metacarpophalangeal Joints - Questions

Take a quiz of the questions on this article.

Take Quiz
Movements which occur at the metacarpophalangeal joint of the thumb are:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which structure acts as the primary stabilizer of the metacarpophalangeal joint during joint flexion?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Shoulder and Upper Limb, Metacarpophalangeal Joints - References

References

Yoshida R,House HO,Patterson RM,Shah MA,Viegas SF, Motion and morphology of the thumb metacarpophalangeal joint. The Journal of hand surgery. 2003 Sep;     [PubMed]
Shah MA,Buford WL,Viegas SF, Effects of extensor pollicis longus transposition and extensor indicis proprius transfer to extensor pollicis longus on thumb mechanics. The Journal of hand surgery. 2003 Jul;     [PubMed]
Leversedge FJ, Anatomy and pathomechanics of the thumb. Hand clinics. 2008 Aug;     [PubMed]
Barry K,McGee H,Curtin J, Complex dislocation of the metacarpo-phalangeal joint of the index finger: a comparison of the surgical approaches. Journal of hand surgery (Edinburgh, Scotland). 1988 Nov;     [PubMed]
Rozmaryn LM, The Collateral Ligament of the Digits of the Hand: Anatomy, Physiology, Biomechanics, Injury, and Treatment. The Journal of hand surgery. 2017 Nov;     [PubMed]
Kataoka T,Moritomo H,Miyake J,Murase T,Yoshikawa H,Sugamoto K, Changes in shape and length of the collateral and accessory collateral ligaments of the metacarpophalangeal joint during flexion. The Journal of bone and joint surgery. American volume. 2011 Jul 20;     [PubMed]
Tickle C, How the embryo makes a limb: determination, polarity and identity. Journal of anatomy. 2015 Oct;     [PubMed]
Cole P,Kaufman Y,Hatef DA,Hollier LH Jr, Embryology of the hand and upper extremity. The Journal of craniofacial surgery. 2009 Jul;     [PubMed]
Gellman H,Botte MJ,Shankwiler J,Gelberman RH, Arterial patterns of the deep and superficial palmar arches. Clinical orthopaedics and related research. 2001 Feb;     [PubMed]
Fricker R,Hintermann B, Skier's thumb. Treatment, prevention and recommendations. Sports medicine (Auckland, N.Z.). 1995 Jan;     [PubMed]
Haddock NT,Beasley RW,Sharma S, Thumb metacarpophalangeal joint ulnar collateral ligament repair with condylar shaving. Techniques in hand     [PubMed]
Weiland AJ,Berner SH,Hotchkiss RN,McCormack RR Jr,Gerwin M, Repair of acute ulnar collateral ligament injuries of the thumb metacarpophalangeal joint with an intraosseous suture anchor. The Journal of hand surgery. 1997 Jul;     [PubMed]
Becton JL,Christian JD Jr,Goodwin HN,Jackson JG 3rd, A simplified technique for treating the complex dislocation of the index metacarpophalangeal joint. The Journal of bone and joint surgery. American volume. 1975 Jul;     [PubMed]
Afifi AM,Medoro A,Salas C,Taha MR,Cheema T, A cadaver model that investigates irreducible metacarpophalangeal joint dislocation. The Journal of hand surgery. 2009 Oct;     [PubMed]
Schubiner JM,Mass DP, Operation for collateral ligament ruptures of the metacarpophalangeal joints of the fingers. The Journal of bone and joint surgery. British volume. 1989 May;     [PubMed]
Adkinson JM,Chung KC, Advances in small joint arthroplasty of the hand. Plastic and reconstructive surgery. 2014 Dec;     [PubMed]
Swanson AB,Herndon JH, Flexible (silicone) implant arthroplasty of the metacarpophalangeal joint of the thumb. The Journal of bone and joint surgery. American volume. 1977 Apr;     [PubMed]
Waljee JF,Chung KC, Objective functional outcomes and patient satisfaction after silicone metacarpophalangeal arthroplasty for rheumatoid arthritis. The Journal of hand surgery. 2012 Jan;     [PubMed]
Kozlow JH,Chung KC, Current concepts in the surgical management of rheumatoid and osteoarthritic hands and wrists. Hand clinics. 2011 Feb;     [PubMed]
Alderman AK,Ubel PA,Kim HM,Fox DA,Chung KC, Surgical management of the rheumatoid hand: consensus and controversy among rheumatologists and hand surgeons. The Journal of rheumatology. 2003 Jul;     [PubMed]
KAPLAN EB, Dorsal dislocation of the metacarpophalangeal joint of the index finger. The Journal of bone and joint surgery. American volume. 1957 Oct;     [PubMed]
Sumarriva G,Cook B,Godoy G,Waldron S, Pediatric Complex Metacarpophalangeal Joint Dislocation of the Index Finger. The Ochsner journal. 2018 Winter;     [PubMed]
Mahajan M,Rhemrev SJ, Rupture of the ulnar collateral ligament of the thumb - a review. International journal of emergency medicine. 2013 Aug 12;     [PubMed]
Valenzuela M,Varacallo M, Anatomy, Shoulder and Upper Limb, Hand Lumbrical Muscles . 2018 Jan     [PubMed]
Ramage JL,Varacallo M, Anatomy, Shoulder and Upper Limb, Wrist Extensor Muscles . 2018 Jan     [PubMed]
Valenzuela M,Varacallo M, Anatomy, Shoulder and Upper Limb, Hand Interossei Muscles . 2018 Jan     [PubMed]
    [PubMed]
    [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Rheumatology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Rheumatology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Rheumatology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Rheumatology. When it is time for the Rheumatology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Rheumatology.