Anatomy, Thorax, Sternum


Article Author:
Abdulraheem Altalib


Article Editor:
Ritesh Menezes


Editors In Chief:
Jesse Cole
Phillip Hynes


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
4/10/2019 8:12:31 PM

Introduction

The sternum is a partially T-shaped vertical bone that forms the anterior portion of the chest wall centrally. The sternum is divided anatomically into three segments: manubrium, body, and xiphoid process. The sternum connects the ribs via the costal cartilages forming the anterior rib cage. The manubrium is the broad superior segment, the body is the middle portion, and the xiphoid process is a narrower distal segment forming the partial T-shape. The anatomical position and variations make the sternum an important bony structure of surgical significance. In addition to the anatomy of the sternum, clinical and forensic implications of the sternum are also topics in this article.

Structure and Function

  • The manubrium (manubrium sterni) is quadrangular shaped with four borders. The suprasternal notch (jugular notch) is at the superior segment of the manubrium sterni. On either side, the left and right clavicular notches are present. The clavicular notches of the sternum articulate with the medial end of each clavicle to form the sternoclavicular joints. The manubrium sterni also articulates with the costal cartilages of the 1st pair of ribs. 
  • The body of the sternum (mesosternum) is the longest part of the sternum. It is flat with depressed ridges along the sides where the costal cartilages of the 3rd to 7th pairs of ribs articulate inferior to the sternal angle.[1] The sternal angle is where the body of the sternum joins the manubrium sterni. Identification of the sternal angle is a useful anatomical landmark because the costal cartilages of the 2nd pair of ribs attach to the sternum at this site.[1][2]
  • The xiphoid process (xiphisternum/xiphoid) is triangular shaped and forms the distal-most part of the sternum. The size and shape of the xiphoid process are highly variable. It is mostly cartilaginous until the age of 40 and becomes completely calcified by the age of 60. However, these age-related changes in the adult xiphoid process are also highly variable.
  • The sternal angle is the projection formed by the junction between the manubrium sterni and the body of the sternum. These two parts of the sternum lie in slightly different planes causing the angulation. This angle corresponds anteriorly to the intervertebral disc between the 4th and 5th thoracic vertebrae. This angle is also known as the angle of Louis.
  • The sternum's primary function is to protect the underlying mediastinum and its contents from injury. 

Embryology

During the 6th developmental week of fetal life, the sternum develops independently from a pair of sternal bands called “sternal bars” which are concentrations of mesenchymal cells on either side of the midline.[3] By the 10th week of intrauterine life, these two sternal bands arise from the parietal layer of the lateral plate mesoderm bilaterally, then convert into pre-cartilaginous structures that migrate and fuse in a craniocaudal direction to form the sternal plate. In the 7th week of intrauterine life, the mesenchyme condenses resulting in the formation of the primary cartilaginous model of the three sternal segments (manubrium sterni, the body of the sternum and the xiphoid process). The cartilaginous sternal model consists of six horizontal divisions known as sternebrae. The superior-most sternebra and the inferior-most sternebra ultimately represent the manubrium sterni and xiphoid process, respectively. The four sternebrae that lie in between represent the body of the sternum.[3] The first part of the sternum to form during embryogenesis is the manubrium sterni followed by the sternal body and the xiphoid process.   

Blood Supply and Lymphatics

The blood supply of the sternum is mainly derived from the medial horizontal branches of the right and left internal thoracic arteries which originate directly from the first part of the subclavian arteries bilaterally or occasionally originate from a common trunk. The internal thoracic artery gives off sternal, anterior intercostal, perforating and non-collateral branches. Sternal branches of the internal thoracic arteries which are the main branches supplying the sternum are primarily located in the intercostal spaces. Not only sternal branches but also perforating branches appear to contribute to the sternal blood supply.[4][5]

The blood supply of the sternum has a major role in the process of healing following sternotomy procedures.[4] It is also important to understand the blood supply of the sternum as sternal infections are not uncommon following the harvest of the internal thoracic artery for coronary artery bypass grafting.[5]

For the venous drainage, the internal thoracic veins drain into the brachiocephalic vein on each side.

Muscles

There are several muscles (muscles of the neck, muscles of the thorax, muscles of the anterior abdominal wall) attached to the sternum.[1] The sternocleidomastoid, sternohyoid and sternothyroid attach to the manubrium sterni. The transversus thoracis muscle attaches to the body of the sternum and xiphoid process. Pectoralis major is another major muscle attached to the body of the sternum. The xiphoid process provides an attachment site for the diaphragm, the most important muscle of respiration, and the abdominal muscular including the external oblique, internal oblique, transversus abdominis, and rectus abdominis muscles.

Physiologic Variants

Usually, females have a shorter and thinner body of the sternum when compared to males.

Anatomic Variations

There are many variations in the sternum that commonly exist. Variations are most common in the distal-most region of the sternum. One of the most prevalent sternal variations is the bifid xiphoid.

Anatomical variations of the sternal angle also exist, for example, the sternal angle can be misplaced resulting in inaccurate counting of the ribs and thereby resulting in errors on physical examination of the chest and procedural errors during nerve blocks and needle thoracostomies. Also, a misplaced sternal angle can increase the risk of sternal fracture in blunt chest trauma. Sometimes an additional sternal symphysis “angle” can exist, which on imaging studies can mimic a sternal fracture, traumatic fissure or osteolytic lesion.[6]

Another congenital defect of the anterior chest wall is the sternal cleft, which results from the failure of midline fusion of the sternum. Depending on the degree of separation, the sternal cleft can be complete or incomplete. The sternal cleft leaves the heart and great vessels unprotected and exposed. A narrow sternal cleft can be even mistaken for a sternal fracture which is another reason why this cleft is of clinical significance.[6][7]

Incomplete fusion of the cartilaginous sternal model can lead to the formation of a circular shaped sternal foramen.[8] This anomaly should not be mistaken for an abnormality during imaging studies of the thorax. Radiologists and surgeons should be well versed in the anatomical variations of the sternum. Moreover, the lack of awareness of the sternal foramen is a subject of concern for the forensic pathologist or anthropologist during the forensic examination of skeletal remains.

Surgical Considerations

The sternum makes up one of the most important landmarks used by surgeons for various procedures.

Median Sternotomy: Sternotomy is considered the benchmark incision for cardiac surgery.[9] The median sternotomy is considered a common critical incision whereby the surgeon splits the sternum along the median plane, enabling the surgeon to have a better view of the heart, great vessels, and the lungs. It is considered the most common osteotomy performed worldwide.[2]

Sternal Aspiration and Sternal Biopsy: These are procedures adopted to collect specimens of bone marrow from the sternum. The sternum is a commonly used site for collection of bone marrow because sternal hematopoietic marrow persists throughout life.[2] Examination of bone marrow is frequently indicated for the diagnosis of blood dyscrasias and metastatic cancer.

Clinical Significance

Sternal Malformations/Defects

  • Cleft sternum
    • A cleft sternum (sternal cleft) is a developmental anomaly caused by the failure of fusion of the two lateral mesodermal sternal bars which later form the body of the sternum.[10] The estimated incidence of the cleft sternum is 1 in 50000 to 100000 live births,[3] representing 0.15 to 0.5% of all chest wall malformations.[3][11] Cleft sternum may occur in isolation or as syndromic in association with other malformations, for example, superficial craniofacial hemangiomas.[12][13] Different types of sternal clefts include the superior sternal cleft, inferior sternal cleft, subtotal sternal cleft, total sternal cleft, and median sternal cleft.[14] Cleft sternum of type superior sternal cleft may occur in combination with the cleft mandible.[15] 
  • Pectus excavatum
    • Interestingly, there are reports of the sternal malformation of pectus excavatum even in ancient Egyptian mummies in medico-historical literature.[16] The estimated incidence of pectus excavatum, also known as "funnel chest," is 1 in 400 to 1000 live births.[14] Pectus excavatum refers to a common chest wall defect where the sternum is depressed posteriorly.[17] This deformity is characterized by the inward displacement of the adjacent costal cartilages in addition to that of the sternum thus causing an abnormal depression of the anterior chest wall. Symptomatology in terms of cardiorespiratory function impairment depends on the severity of the inward displacement of the sternum that causes a reduction in the sterno-vertebral distance.[15]
  • Pectus carinatum
    • The estimated incidence of pectus carinatum is 4 to 13 times less than that of pectus excavatum.[15] It is the second most common anterior chest wall defect after pectus excavatum. This deformity is characterized by the outward displacement of the sternum and the adjacent costal cartilages thus causing an abnormal protrusion of the anterior chest wall.[18] Clinical cardiorespiratory implications of pectus carinatum are less common than in pectus excavatum.[15]
  • Sternal Foramen
    • The estimated incidence of sternal foramen is 2.5% to 13.8% of the general population.[8] As already stated, the sternal foramen results from the incomplete fusion of the cartilaginous sternal model. It is generally asymptomatic and is often an incidental finding found during imaging studies of the thorax. Related clinical implications call for precautions to be taken during sternal biopsy and acupuncture to prevent fatal complications from injury to the aorta or right ventricle.[14]

Other Issues

Forensic Profile of the Sternum

Examination of skeletal remains for forensic purposes may include the examination of the sternum. Often the forensic pathologist or osteologist aims to establish the forensic identity, which primarily includes ethnicity, sex, age, and stature, of an individual from the skeletal remains subjected for examination. Stature estimation from the sternum is a relatively new trend under research when compared to age estimation and sex determination from the sternum. However, not much is published on the determination of ethnicity from the sternum. Forensic anthropological studies are population-specific, and various studies on forensic identification of the sternum are conducted concerning specific populations worldwide.

  • Sex determination from the sternum
    • Osteometric studies aiming at sex determination from the sternum were conducted in different populations.[19][20][21][22][23] The combined length of the body of the sternum and manubrium sterni is the single most useful metric parameter in sexing the sternum.[21][24] However, the accuracy of correctly sexing the sternum increases with multivariate analysis.[24]
  • Age estimation from the sternum
    • The time of fusion or synostosis of the body of the sternum with the manubrium sterni and xiphoid process varies to such an extent that it is often considered unreliable for age estimation in adults.[25]
  • Stature estimation from the sternum
    • The sternal body length and the combined length of the body of the sternum and manubrium sterni are useful predictors of stature. However, it bears repeating that the correlation of stature with the various lengths of the sternum is not better than the correlation of stature with the length of long bones of the lower and upper limbs. Population-specific and sex-specific (within a population) regression equations/formulae are derived to estimate stature from the sternum.[26][27][28][29]

Sternal Injuries

  • Blunt force traumatic injury of the sternum
    • Sternal fractures predominantly correlate with deceleration injuries from road traffic accidents or blunt anterior chest trauma due to physical assault. Sternal fractures either occur in isolation or with other concomitant injuries.[30] Physical assault to the chest wall is responsible for the majority of direct sternal fractures with a high risk of internal organ or soft tissue damage.[30]
    • In the clinical setting, whenever a sternal fracture is suspected, it is crucial to ensure that structures underlying the sternum (heart and lungs) are not injured. On imaging, sternal fractures are visible on lateral chest X-rays or computed tomography (CT) scan. However, according to the current algorithm for the management of isolated sternal fractures, electrocardiogram (ECG) should be conducted to rule out any cardiac associated injuries. If the fracture is displaced, rewiring is needed.[31][32]
  • Iatrogenic sternal fractures
    • Cardiopulmonary resuscitation (CPR) related injuries include fracture of the sternum.[33] Manual CPR related sternal fractures are higher among adults than in children with or without fracture of ribs.[34] Cases of cardioversion related, isolated, undisplaced, sternal fractures appear in the literature.[35] At autopsy, resuscitation-related sternal fractures should not be misinterpreted for those caused by otherwise direct physical violence.

Forensic Implications of Sternal Bone Marrow Aspiration Fatalities

A surgical procedure-related fatality is a medicolegal death that requires further investigation. In such cases, a meticulous forensic autopsy is necessary. A forensic autopsy case report exists documenting a death from hemorrhage due to an iatrogenic penetrating injury of the thoracic aorta secondary to the procedure of bone marrow aspiration from the sternum.[36] Ultrasound-guided sternal bone marrow aspiration should be considered to minimize the risk of untoward incidents of fatal cardiovascular injury.[37] Utmost precautions should be carefully taken to avoid any uncalled for allegations of medical negligence.


  • Image 9838 Not availableImage 9838 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Thorax, Sternum - Questions

Take a quiz of the questions on this article.

Take Quiz
Identification of the sternal angle is a useful landmark for:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
During a median sternotomy, the surgeon will not be able to remove a lesion located in which lobe of the lung?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What clinical feature can be seen on physical exam of the manubrium?

(Move Mouse on Image to Enlarge)
  • Image 3886 Not availableImage 3886 Not available
    Contributed by William Gossman Collection
Attributed To: Contributed by William Gossman Collection



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The sternal angle corresponds to which vertebral disc?

(Move Mouse on Image to Enlarge)
  • Image 424 Not availableImage 424 Not available
    Contributed Illustration by Beckie Palmer
Attributed To: Contributed Illustration by Beckie Palmer



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 25-year-old male involed in a motor vehicle accident arrives in the ED. The patient was unrestrained and sustained blunt chest trauma after striking the steering wheel. During the primary survey he was cyanotic, tachypneic, had bruising and tenderness over the sternum, and a crepitus/crackling sound was heard on auscultation. You suspect a sternal fracture so which chest X-ray view is the best for diagnosing this?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 22-year-old boy who was involved in a lethal fight was stabbed in the right side of the chest by a pocket knife and was brought to the emergency department. The injury was near the sternal body, it was superficial and did not penetrate the chest wall. After stabilizing the patient, a complete examination was conducted and the patient couldn't move his right arm across his body. What muscle is most likely injured?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 34-year-old car unrestrained driver is admitted to the emergency department after a road traffic accident in which he sustained blunt trauma to his upper torso. On examination, there is tenderness and contusions over the anterior chest wall. Vitals and physical examination are otherwise normal. X-ray examination reveals a manubrium sterni fracture at the angle of Louis. An associated fracture of which one of the following pair of ribs is most likely to be observed in this case?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Thorax, Sternum - References

References

J AR,G M,K M,P R, Closing the cleft over a throbbing heart: neonatal sternal cleft. BMJ case reports. 2014 Jul 4;     [PubMed]
Hussain A,Burns B, Anatomy, Thorax, Wall 2019 Jan;     [PubMed]
Gupta M,Sodhi L,Sahni D, Variations in collateral contributions to the blood supply to the sternum. Surgical and radiologic anatomy : SRA. 2002 Dec;     [PubMed]
Berdajs D,Zünd G,Turina MI,Genoni M, Blood supply of the sternum and its importance in internal thoracic artery harvesting. The Annals of thoracic surgery. 2006 Jun;     [PubMed]
Carrier G,Fréchette E,Ugalde P,Deslauriers J, Correlative anatomy for the sternum and ribs, costovertebral angle, chest wall muscles and intercostal spaces, thoracic outlet. Thoracic surgery clinics. 2007 Nov;     [PubMed]
Reser D,Caliskan E,Tolboom H,Guidotti A,Maisano F, Median sternotomy. Multimedia manual of cardiothoracic surgery : MMCTS. 2015;     [PubMed]
Donley ER,Loyd JW, Anatomy, Thorax, Wall Movements 2019 Jan;     [PubMed]
Kirum GG,Munabi I,Kukiriza J,Tumusiime G,Kange M,Ibingira C,Buwembo W, Anatomical variations of the sternal angle and anomalies of adult human sterna from the Galloway osteological collection at Makerere University Anatomy Department. Folia morphologica. 2017 Mar 29;     [PubMed]
Schulz-Drost S,Oppel P,Grupp S,Schmitt S,Carbon RT,Mauerer A,Hennig FF,Buder T, Surgical fixation of sternal fractures: preoperative planning and a safe surgical technique using locked titanium plates and depth limited drilling. Journal of visualized experiments : JoVE. 2015 Jan 5;     [PubMed]
Khoriati AA,Rajakulasingam R,Shah R, Sternal fractures and their management. Journal of emergencies, trauma, and shock. 2013 Apr;     [PubMed]
Guska S,Pilav I,Musanovic S, Clinical significance of isolated sternal fracture. Medicinski arhiv. 2010;     [PubMed]
Hoke RS,Chamberlain D, Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation. 2004 Dec;     [PubMed]
Ram P,Menezes RG,Sirinvaravong N,Luis SA,Hussain SA,Madadin M,Lasrado S,Eiger G, Breaking your heart-A review on CPR-related injuries. The American journal of emergency medicine. 2018 May;     [PubMed]
Milenko B,Slobodan S,Ivana C,Bojana R,Tijana D, Forensic Implications of Sternal Bone Marrow Biopsy Fatalities: Autopsy Case Report. The American journal of forensic medicine and pathology. 2018 Dec;     [PubMed]
Choi PJ,Iwanaga J,Tubbs RS, A Comprehensive Review of the Sternal Foramina and its Clinical Significance. Cureus. 2017 Dec 8     [PubMed]
Ates MS,Duvan I,Onuk BE,Kurtoglu M, Isolated Sternal Cleft in a Patient With Coronary Artery Disease. World journal for pediatric & congenital heart surgery. 2016 Mar     [PubMed]
Acastello E,Majluf R,Garrido P,Barbosa LM,Peredo A, Sternal cleft: a surgical opportunity. Journal of pediatric surgery. 2003 Feb     [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]
    [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Radiation Technology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Radiation Technology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Radiation Technology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Radiation Technology. When it is time for the Radiation Technology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Radiation Technology.