Pulmonary Idiopathic Hypertension


Article Author:
Lauren Krowl


Article Editor:
Pratibha Kaul


Editors In Chief:
Mohamed Alhajjaj
Richard Sue
Fatima Anjum


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
5/25/2019 3:32:29 PM

Introduction

Pulmonary hypertension (PH) is defined as mean pulmonary artery pressure greater than 25 mm Hg measured during right heart catheterization. The term pulmonary artery hypertension (PAH) describes a subset of patients who also have the presence of pre-capillary hypertension including an end-expiratory pulmonary artery wedge pressure (less than 15 mm Hg) and a pulmonary vascular resistance greater than 3 Woods units.

PAH has 3 subgroups: idiopathic, heritable, and pulmonary arterial hypertension related to risk factors or associated conditions. This review will focus on idiopathic pulmonary artery hypertension (IPAH), which corresponds to sporadic disease, in the absence of family history, hereditary forms, or risk factors for PAH.[1][2][3][4]

Etiology

Elevated pulmonary vascular resistance is caused by the proliferation of endothelial and smooth muscle cells causing tunica media hypertrophy of small-caliber pulmonary arteries. Moreover, the endothelial cells have impaired production of nitric oxide and prostacyclin.

Patients with idiopathic and heritable forms of pulmonary artery hypertension (HPAH) are distinguished by identifying an inheritable genetic mutation; whereas, idiopathic forms have an underlying genetic predisposition to develop pulmonary hypertension. Regardless, both forms have genetic mutations that overlap each disease process. IPAH has been associated with the following genetic mutations: bone morphogenetic protein receptor type 2 (BMPR2), mothers against decapentaplegic, Drosophila, homolog of 1 and 9 (SMAD 1 and 9), potassium channel subfamily K member 3 (KCNK3), and caveolin 1 (CAV1). While a genetic basis exists in the development of IPAH, there are environmental factors that likely contribute to the pathogenesis. For instance, in a review of 340 patients with idiopathic PAH, it was found that these patients were 10.14 times more likely to have a history of stimulant use (amphetamine, methamphetamine, cocaine) in comparison to patients with pulmonary artery hypertension and a risk factor (familial disease, collagen vascular disease, congenital systemic-to-pulmonic shunts, or use of fenfluramine/dexfenfluramine). Further research is needed to elucidate these findings fully.

Epidemiology

In a US registry of 2039 patients with pulmonary artery hypertension, the average age was 51.7 (plus or minus 14.5 years) with a female to male ratio of 3.9:1.0. Of those patients, 46.6% (950) were classified as IPAH. It is estimated that IPAH affects 1 in 1 million, usually young females who are otherwise normal. The median survival if left untreated is 2.8 years.[5][6]

Pathophysiology

The initial insult to the pulmonary arteries in idiopathic pulmonary hypertension is likely a combination of genetic predisposition with environmental influences. With that said, the pathophysiology of the development of pulmonary artery hypertension is the same except for different biomarkers that lead to a cascade of events ultimately causing vascular remodeling of the vessel wall. This is an important distinction because knowing the underlying cellular mediators help guide targeted therapies. The vascular remodeling process innate to all forms of pulmonary artery hypertension begins with excessive vasoconstriction, which is related to abnormal expression/function of potassium channels. This leads to a decrease in vasodilators (nitric oxide, prostacyclin) and an increase in vasoconstrictors (endothelin-1).

The decreased lumen size of the pulmonary vasculature causes increased right ventricular afterload. In turn, right ventricular dilation results in septal flattening and Doppler notching and ultimately increased pulmonary artery systolic pressure. To estimate the PASP, continuous wave Doppler is used in determining the peak tricuspid regurgitant jet velocity (TRV). From here, the modified Bernoulli equation is applied (4v^2) and added to the right atrial pressure to estimate PASP. If PASP is found to be greater than 50 mm Hg, then pulmonary hypertension is very likely, and the patient should be referred for a right heart catheterization.

Histopathology

In the presence of chronically elevated pulmonary artery pressure, progressive histological changes occur in the pulmonary vasculature. In the pulmonary arteries and arterioles, there is medial hypertrophy, marked intima fibrosis and thickening of the adventitial layer with occasional plexiform lesions. The intimal lesions account for the most deleterious effects on reducing the lumen of the pulmonary artery and typically comprise of fibrotic, plexiform and concentric lesions. The concentric lesions are organized myofibroblasts or endothelial cells that form “onion-skin” layers seen in severe forms of pulmonary hypertension.

History and Physical

Initial symptoms include dyspnea, fatigue, chest pain, near syncope/syncope, and lower extremity edema. These vague symptoms likely contribute to causing a delay in diagnosis by an average of 2 years for most patients. Physical exam findings in a typical patient with pulmonary hypertension may include an increased pulmonic component of the second heart sound (P2) (93%), tricuspid regurgitation murmur (40%), pulmonic insufficiency murmur (13%), and peripheral edema (32%).

Evaluation

By definition, to diagnose idiopathic pulmonary artery hypertension, all other causes of elevated pulmonary artery pressures must be ruled out. A clinician should start with the least invasive testing before pursuing right heart catheterization, which cinches the diagnosis of pulmonary artery hypertension. Serological testing should be aimed at ruling out connective tissue disease (scleroderma, systemic sclerosis, lupus), HIV, cirrhotic liver disease causing pulmonary hypertension, and schistosomiasis.[7][8][9]

Electrocardiogram (ECG), chest radiography, and pulmonary function tests may provide important clues to diagnosing pulmonary hypertension, though none of these modalities provide enough sensitivity or specificities to serve as a screening tool. On ECG, right-axis deviation and right ventricular hypertrophy can be observed 79% and 87% of the time. Chest radiographic findings of increased pulmonary vascular pressure include attenuated vascular markings and enlargement of main and hilar pulmonary artery. Patients with idiopathic pulmonary arterial hypertension may have mild reductions in total lung capacity (TLC) and forced vital capacity (FVC). Diffusing capacity of carbon monoxide (DLco) is also significantly less in patients with IPAH. Measurement of oxygen saturation during sleep and exercise must be part of work up for patients with suspected pulmonary hypertension as the slightest degree of hypoxia may induce further pulmonary artery vasoconstriction propagating hypertension.

The echo-doppler is the first test to obtain on patients with suspected elevated pulmonary artery pressure. The echo-doppler is used as a screening tool; however, it is found to be only 50% accurate in estimating PASP. The variability of estimating PASP on echo-doppler is due to dynamic changes in volume status of a patient (causing changes in vena cava diameter, therefore different estimates of right atrial pressure), doppler probe positioning, and variability in estimating peak jet velocity. Estimating PASP with Doppler echocardiography to make a diagnosis of pulmonary hypertension should be done in conjunction with overall Doppler examination of the heart as some patients may have underestimated PASP yet have right ventricular dilation or dysfunction. The role of exercise echocardiography in identifying or prognosticating patients with PAH remains controversial.

A right heart catheterization is necessary to diagnose pulmonary artery hypertension (as opposed to pulmonary hypertension). This gives a complete hemodynamic assessment including measurement of pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, transpulmonary and diastolic pressure gradients. Left heart catheterization is often pursued in the same setting because left heart filling pressures may lead to an alternate cause of elevated pulmonary artery pressures (left heart failure causing pulmonary venous congestion).

The fifth world symposium on PAH defines pulmonary hypertension as a mean PAP greater than 25 mm Hg at rest. Pulmonary artery hypertension is defined by mean PAP greater than 25 mm Hg at rest and pulmonary capillary wedge pressure (PCWP) less than 15 mm Hg and peripheral vascular resistance (PVR) greater than 3 Woods units.

Treatment / Management

Before initiating therapy, patients with IPAH should undergo vasoreactivity testing to determine if the patient would have a response to calcium channel blockers (CCB). The test involves administrating a vasodilator (nitric oxide, epoprostenol, adenosine) during right heart catheterization and is considered positive if the mean pulmonary artery pressure decreases by 10 mmHg and to a value less than 40 mm Hg. Additionally, the patient’s cardiac output should increase or remain unchanged, and without a drop in systemic blood pressure. These patients may benefit from calcium channel blockers such as dihydropyridine, nifedipine, or diltiazem.

For patients classified as WHO Class II, endothelin-blocking antagonist such as ambrisentan or bosentan in addition to phosphodiesterase type 5 inhibitors sildenafil are recommended (strength A recommendation). For WHO Class III, in addition to ambrisentan or bosentan plus sildenafil, intravenous (IV) epoprostenol or inhaled iloprost can be used (strength A recommendation). Epoprostenol IV and inhaled iloprost are both a prostacyclin analog causing dilation of pulmonary vessels, inhibiting platelet aggregation and smooth muscle proliferation. If there is an inadequate clinical response, therapeutic alternative for prostacyclin analog, for WHO Class III patients include subcutaneous treprostinil (strength B recommendation). Tadalafil may also be considered if sildenafil is not tolerated. 

For patients classified in WHO Class IV, intravenous epoprostenol is mainstay therapy. If an inadequate clinical response remains, combination therapy including prostanoids, a phosphodiesterase inhibitor, and endothelin blocking antagonist should be considered. Further options for end-stage or rapidly progressive IPAH patients include atrial septostomy and/or lung transplant. Other adjunctive therapies to be considered on a case-by-case basis include oxygen and diuretics to maintain euvolemia.

Differential Diagnosis

Secondary causes of elevated pulmonary artery pressures must be ruled out to diagnose idiopathic pulmonary hypertension. Therefore, the differential diagnosis of idiopathic pulmonary hypertension includes congenital or acquired heart disease, veno-occlusive disease, pulmonary diseases, chronic hypoventilation secondary to sleep apnea, chronic exposure to high altitude, liver disease, ingestion of anorectic medications or pharmaceutical agents, and fibrosing mediastinitis.

Staging

It is imperative for patients to undergo exercise capacity testing to determine the severity of disease and assess response to treatment. Therefore, before beginning therapy, all patients should have a baseline exercise assessment done. Objective measurement is the 6-minute walk test, which is an independent predictor of mortality and can assess response to therapy. From exercise capacity, a patient’s functional class can be determined as per WHO Functional Classification for Pulmonary Hypertension. Table 1

Prognosis

The REVEAL Registry PAH Risk Score Calculator is a tool clinicians may use to help prognosticate patients with pulmonary artery hypertension.

The tool has been validated as a predictive algorithm for 1-year survival. Factors that are independently associated with decreased survival include the following: 

  • Men older than 60 years
  • PAH associated with portal hypertension or connective tissue disorder
  • Family history of PAH
  • WHO Class III or IV, renal insufficiency
  • Resting systolic BP less than 110 mm Hg
  • Heart rate greater than 92 beats per minute
  • Six-minute walk test less than 165 m
  • Brain natriuretic peptide greater than 180 pg/ml
  • Pulmonary vascular resistance greater than 32 Woods units
  • Presence of pericardial effusion on echocardiogram
  • TAPSE (tricuspid annular plane systolic excursion) less than 1.5 cm, percentage predicted diffusing capacity of lung for carbon monoxide (DLCO less than 32%)

Complications

Pulmonary artery hypertension, as well as pulmonary hypertension, can cause a variety of complications. Beginning with vascular complications, patients can have pulmonary artery dilatation secondary to the increased volume and shearing stress on the vessel wall. Potential effects of a dilated pulmonary artery include extrinsic compression of the left main stem coronary artery.

A rare complication is pulmonary artery dissection, which is usually diagnosed in post-mortem exams. While rare, it is associated with congenital heart disease and idiopathic pulmonary artery hypertension.

Chronic pulmonary artery hypertension leads to increased pulmonary artery resistance, which puts increased stress on the right ventricle. This causes the right ventricle to hypertrophy then dilate to accommodate the increased preload. Should these mechanisms fail, then tricuspid regurgitation, pericardial effusion, and potentially cardiac cirrhosis can develop.

Iatrogenic causes of complications from pulmonary artery hypertension come from line infections in patients being treated with prostacyclin analogs. This must be given via a central line and due to the chronic nature of the disease, the line becomes a nidus for infection.

Postoperative and Rehabilitation Care

Patients with pulmonary hypertension are universally at higher risk during surgery. This is dependent on the severity and co-morbid conditions and differs from patient to patient. Specific risks during the peri-operative period include hemodynamic instability and right heart failure. The mechanism of right heart failure is increased pulmonary vascular resistance resulting in decreased cardiac output. Minimizing pulmonary vascular resistance peri-operatively is of central importance in preventing right ventricular failure. To date, there has not been data to support treatment of right ventricular failure due to increased pulmonary vascular resistance. Pressor support has its limitations as increasing peripheral vascular resistance may also increase pulmonary vascular resistance. A combination of inhaled iloprost or intravenous milrinone with oral sildenafil may reduce pulmonary vascular resistance without decreasing systemic blood pressure. Another option is using low dose vasopressin to augment systemic vascular resistance and lower pulmonary vascular resistance through the release of nitric oxide from the pulmonary vessel endothelium.

Deterrence and Patient Education

All patients with idiopathic pulmonary hypertension require supportive therapy including infection prevention (age appropriate vaccinations), supervised rehabilitation and psychological/social support. Female patients of child-bearing age should be counseled on birth control as pregnancy could have detrimental effects on the patient.

Pearls and Other Issues

The term pulmonary artery hypertension has 3 subgroups: idiopathic, heritable, and pulmonary arterial hypertension related to risk factors or associated conditions. In the pulmonary arteries and arterioles, there is medial hypertrophy, marked intima fibrosis and thickening of the adventitial layer with occasional plexiform lesions. The decreased lumen size of the pulmonary vasculature causes increased right ventricular afterload. In turn, right ventricular dilation results in septal flattening and ultimately increased pulmonary artery systolic pressure.

The echo-doppler is the first test to obtain on patients with suspected elevated pulmonary artery pressure. If a patient is found to have mean PAP greater than 25 mm Hg at rest and pulmonary capillary wedge pressure (PCWP) less than 15 mm Hg and peripheral vascular resistance (PVR) greater than 3 Woods units on right heart catheterization, then pulmonary artery hypertension can be diagnosed. All other causes of elevated pulmonary artery pressure must be ruled out to diagnose idiopathic pulmonary artery hypertension. The severity of the disease is measured by a patient's ability to complete 6-minute walk test and scaled according to NYHA Functional Classification. Before initiating therapy, patients with IPAH should undergo vasoreactivity testing to determine if the patient would have a response to calcium channel blockers (CCB). Mainstay treatment for IPAH includes endothelin-blocking antagonists, prostanoids, and phosphodiesterase inhibitors.

Enhancing Healthcare Team Outcomes

Idiopathic pulmonary hypertension is a life-threatening disorder that significantly affects the quality of life and over time leads to right heart failure. A timely evaluation, proper treatment, regular follow up and patient education can positively affect the outcome of the disease. For this, integrated, interprofessional care with involvement of different subspecialties is required. The physicians with a team of nurse specialists, pharmacists and, social workers coordinate closely to provide the best possible care and counsel these patients.

Non-specific symptoms of the disease usually result in the delay in diagnosis. The family physician suspects the disease based on non-invasive tests (echocardiogram, x-ray). Once the presumptive diagnosis of pulmonary hypertension has been made, it is very critical to classify the type of pulmonary hypertension as the treatment for one group may cause deleterious effects if used for another group. These patients are, therefore, referred to different subspecialty physicians to determine the cause. A referral to the pulmonologist is essential for sleep studies and pulmonary function tests to exclude lung disease as a cause. To rule out left heart disease, patients are referred to a cardiologist. Right heart catheterization to confirm the diagnosis is also done by the cardiologist. Similarly, to rule out other causes the patients are also referred to the rheumatologists, and, other doctors. It is also important to counsel the patients so that they can live with this disease.

Treatment of the cause of pulmonary hypertension is the key to manage the disease. Hence, collaboration with physicians, physician assistants, and nurse practitioners in different specialties is essential to manage pulmonary hypertension. [10] [11][12](Level V)


  • Image 6739 Not availableImage 6739 Not available
    Contributed by Lauren Krowl, MD, MBA
Attributed To: Contributed by Lauren Krowl, MD, MBA

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Pulmonary Idiopathic Hypertension - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is true regarding idiopathic pulmonary arterial hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the oral drug of choice to decrease pulmonary hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient recently diagnosed with idiopathic pulmonary arterial hypertension would like to know her expected survival. What is the mean survival after diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which is not a feature of idiopathic pulmonary arterial hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the survival for idiopathic pulmonary arterial hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What cardiac change is associated with primary pulmonary hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the confirmatory test to diagnose idiopathic pulmonary hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When is vasoactivity testing during right-sided cardiac catheterization for pulmonary hypertension considered positive?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which determinants indicate a poor prognosis for patients with a diagnosis of pulmonary artery hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which combination therapy is indicated for patients with WHO functional class II pulmonary artery hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 21-year old female presents to the clinic with shortness of breath and an episode of syncope. Her vital signs are stable, and BMI is 23. Her exam is significant for tricuspid regurgitation, loud S2 and 1+ pitting edema of the lower extremity. An echocardiogram is ordered and shows right ventricle dilation, septal flattening and pulmonary artery systolic pressure (PASP) is estimated to be 60 mmHg. What is the next best step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 35-year old female is recently diagnosed with idiopathic pulmonary hypertension and is started on ambrisentan and sildenafil. Her vasoreactivity testing is negative. Her symptoms are well controlled. She does not require oxygen supplementation, and she can walk more than 300 m during the six-minute walk test. What is the next best step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Pulmonary Idiopathic Hypertension - References

References

George PM,Patterson CM,Reed AK,Thillai M, Lung transplantation for idiopathic pulmonary fibrosis. The Lancet. Respiratory medicine. 2019 Feb 6;     [PubMed]
Yoshihara S,Suzuki S,Matsunaga M,Ohnishi I,Naito M, Right ventricular fibrosis in idiopathic pulmonary arterial hypertension. Acta cardiologica. 2019 Feb 8;     [PubMed]
Farhat N,Lador F,Beghetti M, Diagnosis and treatment of pediatric pulmonary arterial hypertension. Expert review of cardiovascular therapy. 2019 Jan 30;     [PubMed]
Barozzi C,Galletti M,Tomasi L,De Fanti S,Palazzini M,Manes A,Sazzini M,Galiè N, A Combined Targeted and Whole Exome Sequencing Approach Identified Novel Candidate Genes Involved in Heritable Pulmonary Arterial Hypertension. Scientific reports. 2019 Jan 24;     [PubMed]
Zanatta E,Polito P,Famoso G,Larosa M,De Zorzi E,Scarpieri E,Cozzi F,Doria A, Pulmonary arterial hypertension in connective tissue disorders: Pathophysiology and treatment. Experimental biology and medicine (Maywood, N.J.). 2019 Jan 22;     [PubMed]
Berteloot L,Proisy M,Jais JP,Lévy M,Boddaert N,Bonnet D,Raimondi F, Idiopathic, heritable and veno-occlusive pulmonary arterial hypertension in childhood: computed tomography angiography features in the initial assessment of the disease. Pediatric radiology. 2019 Jan 16;     [PubMed]
Andersen S,Nielsen-Kudsk JE,Vonk Noordegraaf A,de Man FS, Right Ventricular Fibrosis. Circulation. 2019 Jan 8;     [PubMed]
van Cleemput J,Sonaglioni A,Wuyts WA,Bengus M,Stauffer JL,Harari S, Idiopathic Pulmonary Fibrosis for Cardiologists: Differential Diagnosis, Cardiovascular Comorbidities, and Patient Management. Advances in therapy. 2019 Feb;     [PubMed]
Le Pavec J,Hascoët S,Fadel E, Heart-lung transplantation: current indications, prognosis and specific considerations. Journal of thoracic disease. 2018 Oct;     [PubMed]
Mortimer K,Hartmann N,Chan C,Norman H,Wallace L,Enger C, Characterizing idiopathic pulmonary fibrosis patients using US Medicare-advantage health plan claims data. BMC pulmonary medicine. 2019 Jan 10;     [PubMed]
Cohen JL,Nees SN,Valencia GA,Rosenzweig EB,Krishnan US, Sildenafil Use in Children with Pulmonary Hypertension. The Journal of pediatrics. 2019 Feb;     [PubMed]
Fox CJ,Cornett EM,Hart BM,Kaye AJ,Patil SS,Turpin MC,Valdez A,Urman RD,Kaye AD, Pulmonary vasodilators: Latest evidence and outcomes in the perioperative setting. Best practice     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pulmonary. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pulmonary, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pulmonary, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pulmonary. When it is time for the Pulmonary board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pulmonary.