Hypercholesterolemia


Article Author:
Michael Ibrahim


Article Editor:
Ishwarlal Jialal


Editors In Chief:
Melissa Max
Danyae Lee
Manouchkathe Cassagnol


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes


Updated:
2/16/2019 10:51:18 AM

Introduction

Lipoprotein disorders are clinically important due to the of the role of lipoproteins in atherogenesis and the associated risk of atherosclerotic cardiovascular disease (ASCVD). For patients with known ASCVD (secondary prevention), cholesterol-lowering leads to a consistent reduction in cardiovascular mortality and cardiovascular events in men and women and middle-aged and older patients. Among patients without cardiovascular disease (primary prevention), the data on reduction in atherosclerotic cardiovascular disease events with statin drugs is also well documented. Patients with triglyceride levels of more than 1000 mg/dl are at increased risk of acute pancreatitis.

Lipoproteins comprise lipids and protein and can be transported in plasma as such, for delivery of cholesterol, triglycerides, and fat-soluble vitamins to the respective organs as needed. In the past, lipoprotein disorders were the domain of specialized lipid physicians. However, the benefit of statin drugs, especially in reducing cardiovascular (CV) events has facilitated the treatment of hypercholesterolemia by family and internal medicine physicians. Despite this paradigm shift, the number of patients who could benefit from lipid-reducing drugs and who are not treated appropriately continues to be a major concern. Hence, the timely evaluation, diagnosis, and treatment of lipoprotein disorders are of primary importance in the practice of medicine. This article reviews a practical approach to hypercholesterolemia and its management. [1][2][3]

Etiology

High cholesterol can be defined as a LDL-cholesterol greater than 190 mg/dL, greater than 160 mg/dL with one major risk factor, or greater than 130 mg/dL with two cardiovascular risk factors. The important risk factors include: 

  • Age; male 45 years or older, female 55 years or older
  • A positive family history of premature atherosclerotic cardiovascular disease (younger than 55 years in a male and younger than 65yrs in a female)
  • Hypertension
  • Diabetes
  • Smoking
  • Low HDL-cholesterol levels (less than 40 mg/dl in male and less than 55 mg/dl in a female).

There are genetic and acquired causes of hypercholesterolemia. The classical genetic disorder is familial hypercholesterolemia due to mutations in the LDL-receptor gene resulting in LDL-C greater than 190 mg/dl in heterozygotes and greater than 450 mg/dl in homozygotes. This defect in the LDL receptor accounts for at least 85% of familial hypercholesterolemia. Familial hypercholesterolemia is caused by loss-of-function mutations in the gene encoding the LDL receptor. The reduction in LDL receptor activity in the liver results in a reduced rate of clearance of LDL from the circulation. The plasma level of LDL increases to a level such that the rate of LDL production equals the rate of LDL clearance by residual LDL receptors as well as non-LDL receptor mechanisms. More than 1600 mutations have been reported in association with familial hypercholesterolemia. The elevated levels of LDL-C in familial hypercholesterolemia are primarily due to a delayed removal of LDL from the blood. Because the removal of IDL is also delayed, the production of LDL from IDL is also increased. Individuals with two mutated LDL receptor alleles (familial hypercholesterolemia homozygotes or compound heterozygotes) have much higher LDL-C levels than those with one mutant allele (familial hypercholesterolemia heterozygotes).[4][5][6]

Other genetic causes of familial hypercholesterolemia include:

  • Defective apolipoprotein B (most common with a mutation at position 3500) resulting in a loss of ligand binding to the LDL receptor
  • A gain-of-function mutation in proprotein convertase subtilisin/kexin type 9 (PCSK9) gene leading to increased affinity of PCSK9 for the LDL-receptor which results in a more rapid clearance of the LDL-receptor by targeting it to the lysosome for degradation in the liver, thus resulting in high plasma LDL-C.

All of the above genetic causes are transmitted in an autosomal dominant mode. Another rare genetic cause is autosomal recessive hypercholesterolemia, due to a mutation in the LDL receptor adaptor protein resulting in defective endocytosis of the LDL receptors.  However, the commonest cause is polygenic hypercholesterolemia which results from an interaction of unidentified genetic factors compounded by a sedentary lifestyle and an increased intake of saturated and trans-fatty acids. Secondary causes include hypothyroidism, nephrotic syndrome, cholestasis, pregnancy, and certain drugs like cyclosporine, thiazide, and diuretics. These can easily be excluded by history, physical examination, and laboratory tests. It is believed that the elevated LDL particles permeate the vascular intima and get trapped by proteoglycans in the intima. In the intima, LDL is oxidatively modified and promote inflammation and fatty streak formation. Atherogenesis evolves through a fibrous plaque to the mature lesion with plaque rupture culminating in a CV event.

Epidemiology

According to the Center for Disease Control and Prevention (CDC), 73.5 million or 31.7% of adults in the United States have high levels of LDL-C and are at twice the risk for heart disease than people with normal levels. Only 48.1% are receiving treatment to lower LDL-C levels. Recent data suggests that the classic disorder, familial hypercholesterolemia has a prevalence of estimate of 1/300,000 as homozygous and 1/250 as heterozygote. In certain populations such as the French Canadians, Lebanese, and Afrikaners it could be as high as 1/100.[7][8][9]

Pathophysiology

In familial hypercholesterolemia, there is either a problem with the LDL receptor or it is missing. Without the receptor, uptake of cholesterol into the liver is not possible. The liver usually processes two-thirds of the circulating LDL. Hundreds of mutations of the LDL receptor have been identified, which express themselves as hypercholesterolemia.

History and Physical

Both history and physical examination can yield useful information. If there is a positive family history of premature atherosclerotic cardiovascular disease, constructing a family tree is useful. Also asking about secondary causes such as smoking, diabetes, dietary intake of total calories, saturated, and trans fats, physical activity, drug therapies, and symptoms of CV disease (angina pectoris, intermittent claudication, transient ischemic attacks) is also important. On physical examination look for features of hypothyroidism (bradycardia, dry skin, delayed reflexes) Nephrotic syndrome (edema, ascites), cholestasis (jaundice, hepatomegaly). In patients with hypercholesterolemia, palpitate all pulses and elicit carotids and femoral bruits. Also, carefully examine the tendon xanthoma (Achilles tendon and extensor tendons on the dorsum of the hand), xanthelasma, and arcus senilis if the patient is younger than 50 years old. In suspected familial hypercholesterolemia patients, a careful examination of the heart for supra-valvar aortic stenosis due to atheroma deposition is warranted.

Evaluation

A plasma lipid profile should be measured in all adults older than 40 years, preferably after a 10 to 12-hour overnight fast. The lipid profile reports the total cholesterol, triglycerides, and HDL-cholesterol, and calculates the LDL-cholesterol by the Friedewald Equation:

  • LDL-C = Total Cholesterol – VLDL(TG/5) – HDL-C

This formula (the Friedewald formula) is accurate if test results are obtained on fasting plasma and if the triglyceride level does not exceed 200 mg/dL. By convention, it cannot be used if the triglyceride level is greater than 400 mg/dL since high triglycerides alter the TG/5 or VLDL-C. Many methods can directly measure LDL-C. Secondary causes can be excluded by doing the following tests: TSH (hypothyroidism), glucose (diabetes), urinalysis and serum albumin (nephrotic syndrome), and bilirubin and alkaline phosphatase (cholestasis). Ideally, if there is an abnormal lipid profile (high cholesterol), the test should be repeated within 2 weeks to confirm the diagnosis before embarking on lifelong therapy.[10][11][12]

Treatment / Management

The cornerstone of treatment of hypercholesterolemia is a healthy lifestyle, an optimum weight, no smoking, exercising for 150 minutes per week, and a diet low in saturated and trans-fatty acids and enriched in fiber, fruit, and vegetables and fatty fish. Plant stanols at a dose of 2 g/d can help reduce LDL-C levels. The drug class of choice is the statin which can lower LDL-C from 22% to 50%. Also, they have been shown to reduce cardiovascular events in both primary and secondary prevention trials. The major side effects are elevated transaminases, myalgia, and myopathy and new-onset diabetes. If transaminases exceed three times the upper limit of normal, the statin dose should be reduced, or a lower dose of another statin should be used. Myopathy is a serious problem since it can result in rhabdomyolysis and acute renal failure. Certain drugs in combination with statins increase this risk. These include gemfibrozil, macrolide antibiotics azole antifungals, protease inhibitors, cyclosporine, nefazodone, and other CYP3A4 inhibitors, and multisystem diseases. However, some patients cannot achieve adequate control of their LDL-C levels even with high-dose statin therapy and require additional drugs. Cholesterol absorption inhibitors (ezetimibe) and/or bile acid sequestrants are the next-line of drugs given their safety in combination with statins. Niacin in combination with the above can be used to further lower LDL-C in primary prevention but not in patients with atherosclerotic cardiovascular disease. Currently, heterozygous FH patients whose LDL-C levels remain markedly elevated (more than 200 mg/dL with cardiovascular disease or more than 300 mg/dL without CVD) on maximally tolerated drug therapy are candidates for LDL apheresis. This is a physical method of purging the blood of LDL in which the LDL particles are removed selectively from the circulation. Usually, LDL apheresis is performed every 2 weeks. A new class of drugs, PCSK9 inhibitors (monoclonal antibodies), can lower LDL-C up to 60% on statin therapy and are approved for use in FH and patients on statin therapy not at their goal.

Treatment of heterozygotes with HMG-CoA reductase inhibitors may normalize LDL levels. However, achieving optimal levels may require one of the combinations involving reductase inhibitors, niacin, bile acid sequestrants, and ezetimibe. Levels of LDL cholesterol less than 100 mg/dL can be obtained with combinations of these drugs in some patients. Treatment of individuals with homozygosity or combined heterozygosity is challenging. Partial control may be achieved with medications including antisense oligonucleotide directed at Apo B-100 synthesis, inhibition of microsomal triglyceride transfer protein, and ezetimibe. Statins and monoclonal antibodies directed at proprotein convertase subtilisin/kexin type 9 (PCSK9) protein are useful if some residual receptor activity is present and there is no null mutation. LDL apheresis in conjunction with medications can be very effective. Striking reduction of LDL levels is observed after liver transplantation, illustrating the important role of hepatic receptors in LDL metabolism.

In conclusion, hypercholesterolemia is a mammoth problem facing us, and it behooves us as health care professionals to get more patients on efficacious therapies like statins which are cost-effective since they are now largely generic. The optimum LDL-C for the population is less than 100mg/dL. In patients with atherosclerotic cardiovascular disease, the goal should be less than 70 mg/dl or a 50% reduction in LDL-C. For others, the goal should be an LDL-C less than 100 mg/dl or a 30% to 50% reduction in LDL-C.[13][14][15]

Complications

  • Heart Disease
  • Stroke
  • Peripheral vascular disease

Enhancing Healthcare Team Outcomes

Besides physicians, the role of the pharmacist, nurse and physical therapist are critical in the management of hypercholesterolemia. The nurse is an ideal position to educate the patient about changes in lifestyle, eating a healthy diet and resuming an active lifestyle. The pharmacist should ensure compliance with the statin medications and offer antismoking aids. Further, the pharmacist should also be aware of the side effects of statins like muscle pain and liver damage; and ensure that regular blood work is performed.

The patient should enroll in an exercise program and achieve a healthy body weight. Patients who fail to lower cholesterol with the above measures should be referred to a bariatric surgeon. [16][17][18] (level V)

Outcomes

With the availability of the statins, adverse effects of hypercholesterolemia have been decreased. More important, if the lifestyle is altered, then there is a significant improvement in body weight, hypertension, and diabetes. Cessation of smoking is also very important in improving outcomes. Countless studies have shown that when hypercholesterolemia is appropriately managed, the outcomes are good. [7][19](Level II)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hypercholesterolemia - Questions

Take a quiz of the questions on this article.

Take Quiz
A patient is started on a low dose of atorvastatin (20 mg/day) and has a mild therapeutic response. Further lowering of cholesterol can be accomplished by which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A screening test has revealed that a patient has total blood cholesterol of 260 mg/dl. What is the appropriate management?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is least likely to decrease serum cholesterol levels?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not recommended in a patient with hypercholesterolemia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 59-year-old with a history of heart disease, diabetes mellitus, and dyslipidemia has changed her diet, started an exercise program, and is taking statins to lower his lipids. She now comes to the clinic and blood work reveals a low-density lipoprotein (LDL) cholesterol of 70 mg/dL. Based on recent data, what should be the current objective in the management of such a patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not a cause of hypercholesterolemia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following dietary factors do not raise LDL-cholesterol?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hypercholesterolemia - References

References

Radaelli G,Sausen G,Cesa CC,Portal VL,Pellanda LC, Secondary Dyslipidemia In Obese Children - Is There Evidence For Pharmacological Treatment? Arquivos brasileiros de cardiologia. 2018 Aug 23     [PubMed]
Zawacki AW,Dodge A,Woo KM,Ralphe JC,Peterson AL, In pediatric familial hypercholesterolemia, lipoprotein(a) is more predictive than LDL-C for early onset of cardiovascular disease in family members. Journal of clinical lipidology. 2018 Jul 31     [PubMed]
Wiegman A, Lipid Screening, Action, and Follow-up in Children and Adolescents. Current cardiology reports. 2018 Aug 9     [PubMed]
Dainis AM,Ashley EA, Cardiovascular Precision Medicine in the Genomics Era. JACC. Basic to translational science. 2018 Apr     [PubMed]
Sturm AC,Knowles JW,Gidding SS,Ahmad ZS,Ahmed CD,Ballantyne CM,Baum SJ,Bourbon M,Carrié A,Cuchel M,de Ferranti SD,Defesche JC,Freiberger T,Hershberger RE,Hovingh GK,Karayan L,Kastelein JJP,Kindt I,Lane SR,Leigh SE,Linton MF,Mata P,Neal WA,Nordestgaard BG,Santos RD,Harada-Shiba M,Sijbrands EJ,Stitziel NO,Yamashita S,Wilemon KA,Ledbetter DH,Rader DJ, Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. Journal of the American College of Cardiology. 2018 Aug 7     [PubMed]
Mytilinaiou M,Kyrou I,Khan M,Grammatopoulos DK,Randeva HS, Familial Hypercholesterolemia: New Horizons for Diagnosis and Effective Management. Frontiers in pharmacology. 2018     [PubMed]
Rawshani A,Rawshani A,Franzén S,Sattar N,Eliasson B,Svensson AM,Zethelius B,Miftaraj M,McGuire DK,Rosengren A,Gudbjörnsdottir S, Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England journal of medicine. 2018 Aug 16     [PubMed]
Ferrières J, Familial hypercholesterolaemia: a look toward the East. Kardiologia polska. 2018     [PubMed]
Danese MD,Sidelnikov E,Kutikova L, The prevalence, low-density lipoprotein cholesterol levels, and treatment of patients at very high risk of cardiovascular events in the United Kingdom: a cross-sectional study. Current medical research and opinion. 2018 Aug     [PubMed]
Winter MP,Wiesbauer F,Blessberger H,Pavo N,Sulzgruber P,Huber K,Wojta J,Distelmaier K,Lang IM,Goliasch G, Lipid profile and long-term outcome in premature myocardial infarction. European journal of clinical investigation. 2018 Jul 30     [PubMed]
Zuo HJ,Deng LQ,Wang JW, [Current status and the consistency analysis of using two criteria for decision making of aspirin use for the primary prevention of ischemic cardiovascular disease in outpatients]. Zhonghua xin xue guan bing za zhi. 2018 Apr 24     [PubMed]
Migliara G,Baccolini V,Rosso A,D'Andrea E,Massimi A,Villari P,De Vito C, Familial Hypercholesterolemia: A Systematic Review of Guidelines on Genetic Testing and Patient Management. Frontiers in public health. 2017     [PubMed]
Tomlinson B,Chan JC,Chan WB,Chen WW,Chow FC,Li SK,Kong AP,Ma RC,Siu DC,Tan KC,Wong LK,Yeung VT,But BW,Cheung PT,Fu CC,Tung JY,Wong WC,Yau HC, Guidance on the management of familial hypercholesterolaemia in Hong Kong: an expert panel consensus viewpoin. Hong Kong medical journal = Xianggang yi xue za zhi. 2018 Aug     [PubMed]
McPherson R, The Cardiovascular Burden of Undiagnosed Familial Hypercholesterolemia: Need to Modify Guidelines to Encourage Earlier Diagnosis and Therapy. The Canadian journal of cardiology. 2018 Jul 11     [PubMed]
Harada-Shiba M,Arai H,Ishigaki Y,Ishibashi S,Okamura T,Ogura M,Dobashi K,Nohara A,Bujo H,Miyauchi K,Yamashita S,Yokote K, Guidelines for Diagnosis and Treatment of Familial Hypercholesterolemia 2017. Journal of atherosclerosis and thrombosis. 2018 Aug 1     [PubMed]
Castelnuovo G,Pietrabissa G,Manzoni GM,Corti S,Ceccarini M,Borrello M,Giusti EM,Novelli M,Cattivelli R,Middleton NA,Simpson SG,Molinari E, Chronic care management of globesity: promoting healthier lifestyles in traditional and mHealth based settings. Frontiers in psychology. 2015     [PubMed]
Fidelix YL,Farias Júnior JC,Lofrano-Prado MC,Guerra RL,Cardel M,Prado WL, Multidisciplinary intervention in obese adolescents: predictors of dropout. Einstein (Sao Paulo, Brazil). 2015 Jul-Sep     [PubMed]
Vickery AW,Bell D,Garton-Smith J,Kirke AB,Pang J,Watts GF, Optimising the detection and management of familial hypercholesterolaemia: central role of primary care and its integration with specialist services. Heart, lung     [PubMed]
Gorina M,Limonero JT,Álvarez M, Effectiveness of primary healthcare educational interventions undertaken by nurses to improve chronic disease management in patients with diabetes mellitus, hypertension and hypercholesterolemia: A systematic review. International journal of nursing studies. 2018 Jun 30     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pharmacy-Pharmacotherapy. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pharmacy-Pharmacotherapy, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pharmacy-Pharmacotherapy, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pharmacy-Pharmacotherapy. When it is time for the Pharmacy-Pharmacotherapy board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pharmacy-Pharmacotherapy.