Neuroanatomy, Corticospinal Cord Tract

Article Author:
Adriana Natali

Article Editor:
Bruno Bordoni

Editors In Chief:
David Wood
Andrew Wilt
Hajira Basit

Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon

12/17/2018 9:47:37 AM


The corticospinal tract, AKA the pyramidal tract, is the major neuronal pathway providing voluntary motor function. This tract connects the cortex to the spinal cord to enable movement of the distal extremities.[1] As the corticospinal tract travels down the brain stem, a majority of its fibers decussate to the contralateral side within the medulla then continues to travel down the spinal cord to provide innervation to the distal extremities and muscle groups. Various collateral pathways exist which do not follow this pathway, leading to variability amongst individuals. This structure continues to develop after birth, with maturation taking place during puberty, due to rising levels of androgens. Clinically, the corticospinal tract is important in ischemic infarcts, rehabilitation, and various neurodegenerative disorders.

Structure and Function

The corticospinal tract originates primarily from the frontoparietal cortices, to include the primary motor cortex, secondary motor area, and somatosensory cortex.[2] The corticospinal tracts then come together to form bundles, which travel through the internal capsule and cerebral peduncles. The bundles then travel down to the brainstem.[3] As the tract reaches the pons, the bundles take on a more compact structure and continue to condense as they descend. As a result, the neural structure of the corticospinal tract takes up more surface area in the upper pons than in the lower pons.[4] As the corticospinal tract continues to travel down into the medulla, 75-90% of the fibers will decussate to the contralateral side via the pyramidal decussation.[5][3]The 5-15% of fibers that do not decussate within the pyramidal decussation make up the anterior corticospinal tract. This tract extends into the spinal cord, but only travels down to the levels of the lower thoracic cord. Various collaterals also exist for the corticospinal tract, with the aberrant pyramidal tract being the most representative. The aberrant pyramidal tract separates from the corticospinal tract within the midbrain and pons, then descends through the medial lemniscus.[6] This collateral pathway may provide an alternative motor pathway in the case of a cerebral infarct which will be discussed below.[2]

After leaving the brainstem and entering the spinal cord, the fibers run down through the anterior and lateral corticospinal tract. When they get to their target level, the fibers of the anterior corticospinal tract decussate through the anterior white commissure before synapsing to a neuron in the anterior horn of the gray matter. The lateral corticospinal tract fibers have previously decussated at the level of the pyramid and synapse at a neuron on the anterior horn when they get to the appropriate level. These neurons, known as anterior horn cells, then project to the limbs and axial muscles to provide voluntary motor function.[3] 


During embryologic development, there is an overgrowth of axons distributed throughout the cortex which incorporate into the corticospinal tract, and as development progresses, many of these axons are eliminated. Gray matter development begins a few weeks after the corticospinal tract axons reach the spinal cord. As growth continues, the corticospinal tract axons will reach the lower part of the cervical spinal cord by 24 weeks gestation.[3][7] After birth, the corticospinal tract continues to develop. The tract is then refined, and motor control develops. The research proposes that refinement of the corticospinal tract happens through the elimination of transient termination and growth within the gray matter of the spinal cord. This is followed by developing control of the corticospinal tract’s role in voluntary motor function.[2] The tract continues development through puberty, which is when the gender differences in white matter emerge. Studies have shown that androgens play a role in axonal development through the proliferation of neural cell bodies and the prevention of cell death following axonal injury. As a result, the development of white matter in males and females diverges during adolescence.[8]

Physiologic Variants

Due to the complex nature of the corticospinal tract, many physiologic variants exist. The collateral pathway known as the aberrant pyramidal tract has been observed in some patients as traveling through the medial lemniscus from the midbrain to the pons until it reached the medulla where it rejoined the corticospinal tract.[6] Variants in have also been observed between men and women following puberty, due to surges in androgens. The neuroprotective nature of testosterone leads to physiologic differences between individuals following adolescence.[8] Studies have shown anatomical and physiologic differences of this structure exist across individuals, and those differences are a continued topic of research.

Clinical Significance

Knowledge of the corticospinal tract is of the utmost importance in many clinical scenarios. Preservation and recovery of the corticospinal tract are necessary for the recovery of impaired motor function following a brain injury.[2] During the event of an acute ischemic stroke hypo-perfused tissue may be potentially salvaged through timely reperfusion therapy. Areas where the corticospinal tract is contained within a small, dense area, such as the pons, have shown less of a correlation between motor impairment and size of the ischemic lesion. Studies have proven that the extent of motor impairment during acute ischemic stroke depends on the extent of the corticospinal tract involved in the lesion.[1][4][9][4] Motor paralysis is a debilitating result of an ischemic infarct, for which rehabilitation has been proven to be the most effective treatment modality.[10] Patients who have the highest degree of improvement following an acute ischemic stroke had superior integrity of the corticospinal tract than those with fewer improvements during rehabilitation.

Damage to the corticospinal tract has been associated with neuromyelitis optica (NMO) and multiple sclerosis (MS). Both autoimmune diseases involve an inflammatory process which causes extensive damage to neurologic structures involved in the corticospinal tract resulting in extensive neurologic disability, including optic neuritis and transverse myelitis.[11][12]

Compromise of the corticospinal tract during development presents may present as a tract that is completely absent, hypoplastic or malformed. Disorders with absent corticospinal tracts are anencephaly where there is a failure of the rostral neural tube to close; congenital aqueduct stenosis, narrowing of the cerebral aqueduct; and microcephaly, which is a defect in proliferation. Underdeveloped corticospinal tracts present in lissencephaly, a defect in migration leading to absent gyration; Walker-Warburg, migration deficiencies yielding cerebro-ocular dysplasia and muscular atrophy; holoprosencephaly, failure of the brain hemispheres to separate. Corticospinal tract malformations usually involve diffuse brain malformation and are most often associated with an abnormal trajectory of the pathway.[3] These pathologies present with a range of problems, including the lack of motor control due to the involvement of the corticospinal tract.

  • Image 7095 Not availableImage 7095 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Neuroanatomy, Corticospinal Cord Tract - Questions

Take a quiz of the questions on this article.

Take Quiz
Which nerve fibers transmit muscle movements?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
Which neural pathway transmits signals to skeletal muscle?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Neuroanatomy, Corticospinal Cord Tract - References


Rong D,Zhang M,Ma Q,Lu J,Li K, Corticospinal tract change during motor recovery in patients with medulla infarct: a diffusion tensor imaging study. BioMed research international. 2014     [PubMed]
Jang SH, The corticospinal tract from the viewpoint of brain rehabilitation. Journal of rehabilitation medicine. 2014 Mar     [PubMed]
Welniarz Q,Dusart I,Roze E, The corticospinal tract: Evolution, development, and human disorders. Developmental neurobiology. 2017 Jul     [PubMed]
Seo JP,Jang SH, Characteristics of corticospinal tract area according to pontine level. Yonsei medical journal. 2013 May 1     [PubMed]
Kamson DO,Juhász C,Shin J,Behen ME,Guy WC,Chugani HT,Jeong JW, Patterns of structural reorganization of the corticospinal tract in children with Sturge-Weber syndrome. Pediatric neurology. 2014 Apr     [PubMed]
Hong JH,Son SM,Byun WM,Jang HW,Ahn SH,Jang SH, Aberrant pyramidal tract in medial lemniscus of brainstem in the human brain. Neuroreport. 2009 May 6     [PubMed]
Kamiyama T,Kameda H,Murabe N,Fukuda S,Yoshioka N,Mizukami H,Ozawa K,Sakurai M, Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2015 Jan 21     [PubMed]
Pangelinan MM,Leonard G,Perron M,Pike GB,Richer L,Veillette S,Pausova Z,Paus T, Puberty and testosterone shape the corticospinal tract during male adolescence. Brain structure     [PubMed]
Zhou Y,Zhang R,Zhang S,Yan S,Wang Z,Campbell BCV,Liebeskind DS,Lou M, Impact of perfusion lesion in corticospinal tract on response to reperfusion. European radiology. 2017 Dec     [PubMed]
Moses ZB,Abd-El-Barr MM,Chi JH, Timing is everything in corticospinal tract recovery after stroke. Neurosurgery. 2015 Apr     [PubMed]
Spampinato MV,Kocher MR,Jensen JH,Helpern JA,Collins HR,Hatch NU, Diffusional Kurtosis Imaging of the Corticospinal Tract in Multiple Sclerosis: Association with Neurologic Disability. AJNR. American journal of neuroradiology. 2017 Aug     [PubMed]
Manogaran P,Vavasour I,Borich M,Kolind SH,Lange AP,Rauscher A,Boyd L,Li DK,Traboulsee A, Corticospinal tract integrity measured using transcranial magnetic stimulation and magnetic resonance imaging in neuromyelitis optica and multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England). 2016 Jan     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatrics-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatrics-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatrics-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatrics-Medical Student. When it is time for the Pediatrics-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatrics-Medical Student.