Cocaine Toxicity


Article Author:
John Richards


Article Editor:
Jacqueline Le


Editors In Chief:
David Wood
Andrew Wilt
Hajira Basit


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
10/22/2019 10:41:51 PM

Introduction

Cocaine abuse is a major worldwide health problem. Patients with acute cocaine toxicity presenting to the emergency department (ED) may require urgent treatment for tachycardia, dysrhythmia, hypertension, and coronary vasospasm, leading to pathological sequelae such as acute coronary syndrome, stroke, and death.[1][2][3]

Over the past few decades, body packers have also presented to the emergency department following bag rupture.  The other problem is that many patients have also ingested other illicit agents, including alcohol, which makes management difficult. While cocaine can adversely affect every organ in the body, its most lethal effects are on the cardiovascular system.

Etiology

The leaves of the coca plant Erythroxylon coca have been used as a stimulant in South America for over 4000 years. Cocaine was first isolated from the leaves in the mid-1800s. It was considered safe and used in toothache drops, nausea pills, energy tonics, and, of course, the original “Coca-Cola” beverage. Since 1961 the International Single Convention on Narcotic Drugs has made recreational use of cocaine a crime internationally. The resurgence of cocaine’s popularity occurred in the 1970s during the disco era, and then in the 1980s, with the advent of crack cocaine. Cocaine is listed as a DEA schedule II controlled substance because it has a medical use (see StatPearls chapter “Cocaine”), but also has a high potential for abuse.[4]

Epidemiology

Cocaine abuse is a major public health problem, with an estimated 20 million users worldwide based on the most recent United Nations World Drug Report. The number of frequent cocaine users, which had been declining since 2006 in North America, has experienced a recent increase, with an estimated 1% of the population reporting use. The Drug Enforcement Agency estimated that in 2012, 639,000 persons aged 12 or older had used cocaine for the first time within the previous 12 months in the United States (US), averaging approximately 1,800 initiates per day. In the US, cocaine was the most common drug of abuse resulting in-hospital treatment, with 505,224 ED visits (40.3% of drug reported visits) in 2011 based on data from the Substance Abuse and Mental Health Services Administration. This translates to a rate of 162 ED visits per 100,000 population.[5][6]

Pathophysiology

Patients who abuse cocaine risk life-threatening consequences, including tachydysrhythmia, severe hypertension, acute coronary syndrome, stroke, acute myocardial and renal failure, seizure, hyperthermia, cocaine-induced rhabdomyolysis, and fetal/maternal morbidity and mortality.[7]

The adverse effects on the heart are due to the direct actions of cocaine by inhibiting the reuptake of catecholamines into the nerve endings. The increased catecholamine levels can induce life-threatening arrhythmias, and at the same time, the local anesthetic properties of cocaine further impair impulse conduction, leading to re-entry ventricular arrhythmias.

Long term use of cocaine can also alter cardiac histology leading to fibrosis, myocarditis, and contraction band necrosis. Cocaine significantly increases myocardial oxygen requirements, heart rate, and cardiac output. In patients with even mild coronary disease, these hemodynamic changes plus its vasoconstriction ability can trigger an acute coronary syndrome.

Asides from the myocardium, cocaine can also increase the risk of ischemic stroke. Cocaine can also cause seizures by lowering the threshold for seizure initiation. Chronic use of cocaine can lower the density of dopamine receptors leading to extrapyramidal symptoms, dystonia, bradykinesia, akinesia, and akathisia.

A high risk of death is the ability of cocaine to induce delirium. These patients are often at risk for sudden death. Excited delirium is often associated with aggression, hyperactivity, extreme paranoia, hyperthermia, incoherent screaming, and unusual strength. Individuals who develop excited delirium tend to be more sensitive to the elevated levels of catecholamines.

Another feature of cocaine toxicity is hyperthermia, which may be as high as 45 C. Hyperthermia is a marker for poor prognosis and is often associated with muscle breakdown, renal and liver injury, encephalopathy, disseminated intravascular coagulation (DIC), and metabolic acidosis.

Toxicokinetics

Cocaine can be snorted, swallowed, injected, or smoked. Its pharmacodynamics involves multiple complex mechanisms, although its half-life is short at about 1 hour. This drug binds and blocks monoamine (dopamine, norepinephrine, and serotonin) reuptake transporters with equal affinity. Monoamines accumulate in the synaptic cleft resulting in enhanced and prolonged sympathetic effects. The principal actions of cocaine on the cardiovascular system are from alpha- and beta-1-adrenoceptor stimulation resulting in increased heart rate, systemic arterial pressure, and myocardial contractility, which are major determinants of myocardial oxygen demand. Cocaine and its metabolites may cause arterial vasoconstriction hours after use.[7] Epicardial coronary arteries are especially vulnerable to these effects, leading to decreased myocardial oxygen supply. Cocaine-induced platelet activation and thrombus formation are another deleterious effects caused by alpha-adrenergic- and adenosine diphosphate-mediated increase in platelet aggregation. Plasminogen activator inhibitor is also increased following cocaine use, thereby promoting thrombosis. Similar to local anesthetics such as lidocaine, cocaine blocks sodium channels, and interferes with action potential propagation. This Vaughn-Williams class IC effect increases the risk of conduction disturbance and tachyarrhythmias. Adding to its complex toxicity, cocaine targets muscarinic acetylcholine, N-methyl-D-aspartate (NMDA), sigma, and kappa-opioid receptors.[8]

History and Physical

These patients present to the hospital with agitation, chest pain, anxiety, psychosis, and blunt and penetrating traumatic injuries. They are frequently hypertensive and tachycardic. They may be unwilling to disclose their cocaine use, and clinicians must consider a wide spectrum of diagnoses during the initial evaluation, such as withdrawal syndromes, thyrotoxicosis, acute psychosis, sepsis, pheochromocytoma, anticholinergic toxicity, serotonin and neuroleptic malignant syndromes, and intracranial hemorrhage.

A thorough history of drug abuse should be sought, including past admissions.

Patients suspected of cocaine toxicity may have the following features:

  • Hypertension
  • Altered mental status
  • Seizure
  • Chest pain, dyspnea
  • Epistaxis
  • Headache
  • Paranoia
  • Neurological deficits
  • Hyperthermia
  • Vascular spasm and loss of distal pulses
  • Extreme diaphoresis
  • Severe agitation, restless, confusion
  • Pruritus
  • Blurring of vision
  • Corneal ulceration, vision loss
  • Diarrhea, vomiting, abdominal pain (think mesenteric ischemia)
  • Excited delirium

Stages of acute cocaine toxicity

Three stages of acute cocaine toxicity have been described and include the following:

Stage 1:

  • CNS: Headache, nausea, mydriasis, vertigo, twitching, pseudohallucinations and preconvulsive movements
  • Vascular: Increased BP, ectopic beats
  • Pulmonary: Tachypnea
  • Skin: Hyperthermia
  • Psychiatric: Paranoia, euphoria, confusion, aggression, agitation, emotional lability, restlessness

Stage 2:

  • CNS: Encephalopathy, seizures, increased deep tendon reflexes, incontinence
  • Cardiac: Hypertension, arrhythmias,  peripheral cyanosis
  • Pulmonary: Tachypnea, gasping, apnea, irregular breathing
  • Skin: Hyperthermia

Stage 3:

  • CNS, Areflexia, coma, fixed and dilated pupils, loss of vital functions
  • Cardiac: Hypotension, ventricular fibrillation, cardiac arrest
  • Pulmonary: Apnea, respiratory failure, cyanosis, agonal breathing

Evaluation

Depending on the patient's presentation, laboratory testing for suspected cocaine toxicity can include complete blood count, comprehensive chemistry panel, troponin, B-type natriuretic peptide, creatinine kinase, urinalysis, urine toxicology screen, and electrocardiogram. Imaging may also include chest x-ray, abdominal x-ray for suspected body packers or stuffers, and head CT if altered mental status suggests intracranial hemorrhage.[9][10]

Creatine kinase may be useful for the detection of rhabdomyolysis. Urinalysis may detect myoglobinuria. A urine drug screen is a must to detect other illicit substances. Most cocaine disappears from the body within 24 hours, but the metabolite, benzoylecgonine, may persist for weeks. This metabolite can also cause neurotoxicity.

A myocardial infarction should be ruled out with troponin, and if meningitis is suspected, a lumbar puncture should be done.

The chest x-ray may show signs of pulmonary edema, pneumothorax, or even aspiration pneumonia. The abdominal x-ray may reveal swallowed packets of cocaine. Because of false negatives with the plain x-rays, a contrast-enhanced study or CT scan is recommended. The risk of bag rupture increases with time, so it is important to make the diagnosis promptly.

CT scan of the head is recommended in patients with seizures to identify any other pathology. An ECG should be done if the patient has chest pain, dyspnea, irregular pulse, or hypoxia.

Treatment / Management

Patients with cocaine toxicity need to be stabilized, and attention should be paid to the ABCDEs. The patient's fever should be managed, and one should rule out hypoglycemia as a cause of the neuropsychiatric symptoms. A pregnancy test should be ruled in women of childbearing age. The treatment should be based on clinical symptoms, and one should avoid physical restraints. 

Based on a large systematic review referenced below, cardiovascular toxicity and agitation are best-treated first-line with benzodiazepines to decrease CNS sympathetic outflow.[11] However, there is risk of over-sedation and respiratory depression with escalating and numerous doses of benzodiazepines, which is often necessary. Non-dihydropyridine calcium channels blockers such as diltiazem and verapamil have been shown to reduce hypertension reliably, but not tachycardia. Dihydropyridine agents such as nifedipine should be avoided, as reflex tachycardia may occur. The alpha-blocker phentolamine has been recommended but only treats alpha-mediated hypertension and not tachycardia. It is a rarely-used drug, and most clinicians are unfamiliar with its use and limited titratability. Nitroglycerin and nitroprusside are effective at lowering blood pressure, but risk of reflex tachycardia should be recognized. The mixed beta/alpha blocker labetalol has been shown to be safe and effective for treating concomitant cocaine-induced hypertension and tachycardia, without any “unopposed alpha-stimulation” adverse events recorded. The use of labetalol is approved by a recent AHA/ACC guideline for cocaine and methamphetamine patients with unstable angina/non-STEMI.[12]

Agitated patients are best treated with benzodiazepines, but antipsychotics such as haloperidol and olanzapine may also be useful. Combination treatment with benzodiazepines and antipsychotics has been shown to be more efficacious than monotherapy.[13]  Diphenhydramine is often added to enhance sedation and as prophylaxis against dystonia and akathisia. A common example of this is the “B-52” with its combination of haloperidol (5 mg), diphenhydramine (50 mg), and lorazepam (2 mg). Lidocaine and intravenous lipid emulsion have been successfully used for serious ventricular tachydysrhythmia in several case reports. Hyperthermia from cocaine toxicity is best treated with external cooling measures. Tepid water misting with convection cooling from a fan is the easiest and safest method to accomplish this in the field and all emergency departments.[11]

Differential Diagnosis

  • Hypoglycemia
  • Anticholinergic toxicity
  • CNS hemorrhage
  • Delirium tremens
  • Acute schizophrenia
  • Phencyclidine (PCP) toxicity
  • Neuroleptic malignant syndrome

Prognosis

Cocaine toxicity is associated with high mortality. Also, injection of cocaine can be associated with pneumothorax, thrombosis, endocarditis, pseudoaneurysm of the central vessels, and arteriovenous fistulas. Other sequelae include cellulitis, HIV infection, thrombophlebitis, abscess, tetanus, and necrosis. For those who develop neuropsychiatric symptoms, the recovery is often prolonged and may not be complete.

Complications

  • Thrombophlebitis
  • HIV
  • Cellulitis
  • Hepatitis
  • Endocarditis
  • Pulmonary emboli
  • Aneurysms

Pearls and Other Issues

The phenomenon of “unopposed alpha-stimulation,” in which blood pressure increases or coronary artery vasoconstriction worsens after blockade of beta-2 vasodilation in cocaine-abusing patients, is controversial. This rarely-encountered adverse effect has resulted in some clinicians advocating for an absolute contraindication to the use of all beta-blockers, including specific, non-specific, and mixed. Many clinicians disregard this dogma and administer beta-blockers for cocaine-related chest pain and acute coronary syndrome, especially when there is demand ischemia from uncontrolled tachycardia.[8] Of the 1,744 total patients identified in the systematic review, only seven adverse events were from putative cases of “unopposed alpha-stimulation” due to propranolol (n=3), esmolol (n=3), and metoprolol (n=1). The authors of the original “unopposed alpha-stimulation” articles dating back to the 1980s concluded in a 2017 review that the phenomenon might be the from effects of cocaine alone, with or without beta-blockers.[11]

Enhancing Healthcare Team Outcomes

Over the past three decades, the rates of overdose from cocaine have gradually increased. In the United States, deaths involving cocaine range from 0.9-1.6 per 100,000 population. Only in the last five years have the rates started to decrease to 0.78 per 100,000 population. People who inject cocaine into the neck veins have been known to develop a pneumothorax, thrombophlebitis, hemothorax, and myositis. In addition, there are reports that intravenous injections can be associated with aneurysms of vessels, resulting in rupture, obstruction, and fistula formation. When cocaine is combined with other illicit and prescription drugs, the mortality rates are also high. More important, cocaine and alcohol have been associated with a 16 fold increase in the risk of suicide than either agent alone. Individuals who use cocaine often select a violent method for self-harm. Finally, cocaine use during pregnancy is also associated with adverse perinatal outcomes.[14][15](Level V) 

An interdisciplinary team can improve patient outcomes. Emergency department nurses are often responsible for triage. I high index of suspicion is needed. Emergency department and urgent care doctors and nurse practitioners are involved with initial treatment, while intensivists, cardiologists, and hospitalists continue care. Pharmacists monitor medication usage and dose, as well as checking for drug-drug interactions and contraindications. Specialty trained nurses such as emergency and critical care nurses administered ordered treatments, monitor patients and notify the team of changes in the patient's condition. They also provide education to the patient and the family.

To date, there is no drug to prevent or cure cocaine addiction. The key is to educate the patient when he or she presents to the emergency department. Patients should be urged to seek drug counseling. Those who intended to commit suicide should be referred to a mental health counselor prior to discharge.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Cocaine Toxicity - Questions

Take a quiz of the questions on this article.

Take Quiz
A 24-year-old male unconscious patient is brought to the emergency department due to wide-complex tachydysrhythmia after smoking a white powdery substance in an attempt to get high. Even after the most appropriate initial resuscitation, he expires in the emergency department. Based on the description of the drig and patient' clinical presentation, which of the following agent is most likely to cause fatal cardiac tachydysrhythmias?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 33-year-old male presents to the emergency department after using an unknown amount of cocaine. He has ataxia, rotary nystagmus, slurred speech, and does not react to painful stimuli. His heart rate is 140b/min, and blood pressure is 190/110mmHg. Which of the following adulterants is the most likely cause of the patient's presentation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the most important fact about cocaine abuse?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 42-year-old male presents to the emergency department complaining of acute onset of severe chest pain. He additionally tells the physician that he developed chest pain after he snorted cocaine. During this recent emergency department visit, his ECG shows ST-depression in the anterior leads. Also, his vital signs are a heart rate of 120b/min, blood pressure of 160/100 mmHg, respiratory rate of 20/min, and temperature of 36C. Which of the following medication should be given first in cocaine-associated myocardial ischemia and infarction?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 33-year-old agitated male patient with cocaine overdose presents to the emergency depatment. What objective vital sign finding would be expected in the setting of cocaine toxicity?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 21-year-old female patient is admitted to the hospital for a cocaine overdose. She starts having short episodes of ventricular tachycardia that become longer in duration (> 30 seconds). Vital signs are blood pressure 110/50 mmHg, heart rate 140b/min, respiratory rate 20/min, and temperature 37C. Administration of which one of the following drugs would be indicated for treating this wide-complex tachydysrhythmia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 24-year-old male is brought to the emergency department for cocaine use and headache. On presentation to the emergency department, his vital signs recorded included a blood pressure of 180/100 mmHg and a heart rate of 140 b/min. Physical examinations revealed agitation, restlessness, sweating, and dilated eyes. Additionally, a head CT scan was also performed, which showed no abnormalities. Based on the patient history and physical examination, which of the following is the best drug to manage the patient's current condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 52-year-old male has a blood pressure of 245/132 after cocaine use and is unresponsive to anything except painful stimuli. He is intubated and on a ventilator. The patient has dense left hemiparesis but intact gag, cough, and corneal reflexes. CT shows a large intracranial bleed in the right frontoparietal area. The patient deteriorates, his right pupil dilates, and his blood pressure drops to 192/98. Which of the following interventions is least appropriate?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the lowest dose of cocaine that can cause severe adverse effects in an adult?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 24-year-old male presents to the emergency department with agitation, tachycardia, and hypertension directly after injecting cocaine. His vital signs include a heart rate of 140b/min, blood pressure 200/100mmHg, respiratory rate 20/min, and temperature of 38C. What should be the first-line treatment of cocaine central nervous system and/or cardiovascular toxicity?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old female presents to the emergency department with acute psychosis, tachycardia, and hypertension after smoking crack cocaine. The patient does not respond to multiple escalating doses of intravenous (IV) benzodiazepines. Which of the following is the second-line treatment of the concomitant refractory tachycardia and hypertension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Cocaine Toxicity - References

References

Hantson P, Mechanisms of toxic cardiomyopathy. Clinical toxicology (Philadelphia, Pa.). 2018 Sep 27     [PubMed]
Mikhail A,Tanoli O,Légaré G,Dubé PA,Habel Y,Lesage A,Low NCP,Lamarre S,Singh S,Rahme E, Over-the-Counter Drugs and Other Substances Used in Attempted Suicide Presented to Emergency Departments in Montreal, Canada. Crisis. 2018 Sep 14     [PubMed]
Narula N,Siddiqui F,Katyal N,Krishnan N,Chalhoub M, Cracking the Crack Dance: A Case Report on Cocaine-induced Choreoathetosis. Cureus. 2017 Dec 22     [PubMed]
Mladěnka P,Applová L,Patočka J,Costa VM,Remiao F,Pourová J,Mladěnka A,Karlíčková J,Jahodář L,Vopršalová M,Varner KJ,Štěrba M, Comprehensive review of cardiovascular toxicity of drugs and related agents. Medicinal research reviews. 2018 Jul     [PubMed]
Paulozzi LJ, Opioid analgesic involvement in drug abuse deaths in American metropolitan areas. American journal of public health. 2006 Oct     [PubMed]
Turner C,Chandrakumar D,Rowe C,Santos GM,Riley ED,Coffin PO, Cross-sectional cause of death comparisons for stimulant and opioid mortality in San Francisco, 2005-2015. Drug and alcohol dependence. 2018 Apr 1     [PubMed]
Agrawal PR,Scarabelli TM,Saravolatz L,Kini A,Jalota A,Chen-Scarabelli C,Fuster V,Halperin JL, Current strategies in the evaluation and management of cocaine-induced chest pain. Cardiology in review. 2015 Nov-Dec     [PubMed]
Maraj S,Figueredo VM,Lynn Morris D, Cocaine and the heart. Clinical cardiology. 2010 May     [PubMed]
Richards JR,Gould JB,Laurin EG,Albertson TE, Metoprolol treatment of dual cocaine and bupropion cardiovascular and central nervous system toxicity. Clinical and experimental emergency medicine. 2018 Jan 31     [PubMed]
Richards JR,Garber D,Laurin EG,Albertson TE,Derlet RW,Amsterdam EA,Olson KR,Ramoska EA,Lange RA, Treatment of cocaine cardiovascular toxicity: a systematic review. Clinical toxicology (Philadelphia, Pa.). 2016 Jun     [PubMed]
Modisett KL,Walsh SJ,Heffner AC,Pearson DA,Kerns W 2nd, Outcomes in Cardiac Arrest Patients due to Toxic Exposure Treated with Therapeutic Hypothermia. Journal of medical toxicology : official journal of the American College of Medical Toxicology. 2016 Sep     [PubMed]
Alfa-Wali M,Atinga A,Tanham M,Iqbal Q,Meng AY,Mohsen Y, Assessment of the management outcomes of body packers. ANZ journal of surgery. 2016 Oct     [PubMed]
Zimmerman JL, Cocaine intoxication. Critical care clinics. 2012 Oct;     [PubMed]
Richards JR,Hollander JE,Ramoska EA,Fareed FN,Sand IC,Izquierdo Gómez MM,Lange RA, β-Blockers, Cocaine, and the Unopposed α-Stimulation Phenomenon. Journal of cardiovascular pharmacology and therapeutics. 2017 May;     [PubMed]
Zun LS, Evidence-Based Review of Pharmacotherapy for Acute Agitation. Part 1: Onset of Efficacy. The Journal of emergency medicine. 2018 Mar;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatrics-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatrics-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatrics-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatrics-Medical Student. When it is time for the Pediatrics-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatrics-Medical Student.