Paroxysmal Atrial Tachycardia


Article Author:
Jason Kaplan


Article Editor:
Vasimahmed Lala


Editors In Chief:
David Wood
Andrew Wilt
Hajira Basit


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
5/5/2019 11:52:37 PM

Introduction

Atrial tachycardia is a form of supraventricular tachycardia (SVT) usually seen in patients with structural heart abnormalities but can be seen in patients with structurally normal hearts.  Unlike other SVTs, atrial tachycardia does not depend upon the atrioventricular junction or accessory pathways for initiation or maintenance.

Typical with most SVTs, atrial tachycardia exhibits a narrow QRS complex tachycardia. A narrow complex tachycardia is defined as a QRS complex <120 milliseconds. A compound this short illustrates the rapid activation of the ventricles, which indicates that the arrhythmia is originating above the ventricles. 

Heart rates are highly variable in atrial tachycardia producing a rate usually between 100-250. The rhythms of atrial tachycardias are commonly regular, but irregular variants can be seen. P wave morphology is highly variable and can indicate the location and origin of the arrhythmia. The arrhythmias can originate in either the left or right atrium, superior vena cava and as well as some lesser common areas such as the hepatic veins and noncoronary aortic cusp.[1] The basic anatomy of the heart is vital to consider the origins of reentrant circuits. The orifices of the vena cava, coronary sinus, and pulmonary veins are common anatomical sites where reentry can occur. 

Etiology

Atrial tachycardia can manifest itself in patients with both anatomically normal and anatomically abnormal hearts. The structure of the patient’s heart can be responsible for specific variants. In hearts, reentrant variations, typically present in hearts that accommodate the reentrant conduction, such as in the orifices of the vena cava, coronary sinus, and pulmonary veins.

Atrial tachycardia can present secondary to a triggering event or conditions. Hypoxia, catecholamine release, alcohol, drug use, and even exercise can trigger atrial tachycardia. Iatrogenic versions are seen following ablation procedures; most commonly originating from gaps in the ablation lines. [2]

Epidemiology

Atrial tachycardia is a less common form of SVT, accounting for 5-15% of diagnosed SVTs. Atrial tachycardia is seen in all age ranges but tends to present more in older patients. There is no known ethnic or racial association but appears more commonly in patients with known triggering risk factors (see etiology).  

Pathophysiology

The pathophysiology of atrial tachycardia can vary depending on the origin of the arrhythmia, which can be determined through electrophysiology mapping to elucidate the source of the sickness. Reentrant atrial tachycardias can manifest due to an anatomical provenance or an iatrogenic origin, commonly by postsurgical scar tissue or post ablation gaps.

Patients with structurally normal hearts typically display atrial tachycardia thanks to increased tissue automaticity. P wave location can provide insight into the anatomical area of the enhanced tissue, but electrophysiologic mapping is crucial for the exact position.[3] Atrial tachycardias provoked by increased tissue automaticity display a ‘warm-up phenomenon’ in which the atrial rate accelerates to its peak rate upon initiation of the arrhythmia.  

Atrial tachycardia, with trigger origins, result from an electrolyte disturbance after an action potential. The error occurs by a calcium influx, originating from the other action potential, which causes depolarization. If the depolarization is significant enough, to reach the threshold, an action potential is generated. If this event is isolated, it may only result in an atrial ectopic beat, but if this electrolyte disturbance continues, it will produce a tachycardic arrhythmia. Catecholamine imbalance and digitalis toxicity are common trigger sources. Triggered atrial tachycardia can originate in one location in the atria or from multiple sites, which can result in a regular or irregular rhythm.

History and Physical

Patients with atrial tachycardia can be asymptomatic or symptomatic. If asymptomatic, the patient’s arrhythmia will be found incidentally on an EKG or any rhythm recorder. Patients who present symptomatically may complain of dizziness, palpitations, dyspnea, lightheadedness or chest pain. The patient’s atrial tachycardia could be a manifestation of an underlying condition. Patients must be worked up for underlying pathologies. For example, multifocal atrial tachycardia is most commonly elicited by an underlying chronic obstructive pulmonary disease (60%). The hypoxemia and increased bronchodilator use, which in turn causes increased catecholamine release, is thought to initiate multifocal atrial tachycardia.

When encountering a patient with atrial tachycardia, it is essential to get a thorough medical history. It is vital to ask about any cardiac surgery or procedures. Make a note of any family history of cardiac conditions or sudden death. Also, review the patient’s current medications as well any over the counter supplementation. Finally, ask about any illicit drug abuse, alcohol abuse or environmental or workplace exposures. 

A thorough physical exam is required to work up and rule out other possible triggering conditions. Accurate vitals are essential to determine if the patient is hemodynamically stable. Cardiac reviews such as an EKG and an echocardiogram are crucial in identifying the source of the arrhythmia and establishing the sites of structural heart defects precipitating the malady. 

Evaluation

The first step in the evaluation of a patient in atrial tachycardia is to obtain a 12 lead EKG. Ideally, the patient should also have a baseline EKG to compare against the abnormal. By reading the EKG, you should be able to determine the type of atrial tachycardia. Additionally, the morphology and the pattern of the P waves in the EKG could help you spot the location or locations of the origin of the arrhythmia. With a positive or biphasic P wave in aVL, one can infer right atrial origin (88% sensitivity, 79% specificity). With a positive P wave in lead V1, one can assume left atrial origin (93% sensitivity, 88% sensitivity).

Once the EKG is obtained, and the arrhythmia is determined, basic labs should be drawn to work up any underlying pathology that could be causing this arrhythmia. Additionally, an echocardiogram should be performed to look for any structural heart defects that could be causing this problem.

If the atrial tachycardia is found to be primary in nature, electrophysiology mapping should be done to precisely determine the origin and pattern to the arrhythmia. Mapping is crucial if the patient wants to undergo an ablation procedure to resolve their arrhythmia.[4][5] 

Another option, typically for patients with paroxysmal events, is home telemetry. This process would be useful in patients who are symptomatic but have a normal EKG, lab workup and echocardiogram. 24-hour monitoring can catch the arrhythmia and provide valuable information to its etiology.

Treatment / Management

Hemodynamic stability is the first step in determining treatment for a patient with atrial tachycardia. According to the 2015 American College of Cardiology [6], American Heart Association and the Heart Rhythm Society, first line management for hemodynamically unstable atrial tachycardia is IV Adenosine. If Adenosine is ineffective or not possible (due to no IV access for example), synchronized cardioversion is warranted. Adenosine is also the first line treatment for patients with paroxysmal atrial tachycardia.

For a hemodynamically stable patient, according to the same guidelines as above, first line management is IV beta-blockers, IV Diltiazem or IV Verapamil. [7][8] IV amiodarone or IV ibutilide can be used if the IV beta blockers or IV diltiazem/verapamil are ineffective.

In chronic management of atrial tachycardia beta blockers, diltiazem and verapamil can be used in their oral forms. In patients without structural heart defects or ischemic heart disease, flecainide or propafenone can be used. Patients can be managed on amiodarone [9] or sotalol. Digitalis is another option for patients with chronic atrial tachycardia. Digitalis toxicity can cause atrial tachycardia, but if handled and dosed properly, digitalis can be useful in managing this condition.

Cardioversion can also be used for patients who have refractory atrial tachycardia or atrial tachycardia which has been difficult or unable to control pharmacologically. Another non-pharmacologic treatment used in refractory cases is treatment by radiofrequency catheter ablation.[10][11] After mapping, the atrial tachycardia’s origin can be targeted. The ablation technique is aimed at correcting the arrhythmia and curing the condition. Experienced centers have noted success rates >90% with complication rates around 1%. 

Differential Diagnosis

Differential diagnoses for symptomatic atrial tachycardia are primarily other arrhythmias. In order to identify different rhythms, a 12 lead EKG will need to be obtained and read accurately.  A full workup needs to be completed to establish if the arrhythmia is secondary to another condition.

Differentials include:

  • Sinus tachycardia
  • Atrial fibrillation,
  • Atrial flutter
  • Ventricular tachycardia
  • Torsades de Pointes
  • Hyperthyroidism
  • Anemic state

Prognosis

Atrial tachycardia is not considered a life-threatening condition. Lifestyle modifications need to be implemented to prevent atrial tachycardia from being triggered again if that was the cause. Caffeine, alcohol, and situations that cause stress or anxiety should be avoided. Adequate and regular sleep is recommended. Prolonged states of atrial tachycardia can cause long term effects on the heart such as cardiac remodeling. Atrial tachycardia typically is more difficult to control the more prolonged time the heart stays in the arrhythmia, so it is essential to correct the arrhythmia or underlying issue as quickly as possible.

Complications

Atrial tachycardia does not have many complications from the arrhythmia itself, but many of the difficulties come from the treatment methods. Chronic atrial tachycardia can cause cardiac remodeling, which could lead to pump dysfunction and heart failure.

Many complications can occur from cardiac ablation, most commonly bleeding from the site of insertion. Other complications to be aware of is mechanical trauma to the heart itself; such as damage to the heart vessels, the valves or even puncture the wall of the heart. Another feared complication of ablation is to create another arrhythmia, which could also cause the patient to become unstable. If the normal conduction is damaged enough, a pacemaker may be required to manage the new arrhythmia.[12]

Complications from medication used to treat atrial tachycardia (see drugs classes side effects and contraindications). Cardioversion has its own set of possible complications. Complications can range from as benign as minor burning of the skin to severe arrhythmias and even asystole (see cardioversion complications).

Deterrence and Patient Education

Atrial tachycardia is caused by a problem in the heart’s conduction system which coordinates the heartbeat. The issue in atrial tachycardia is the heart is beating too fast. Patients can experience this event with or without symptoms. Common symptoms include palpitations, dizziness, lightheadedness and passing out. If you feel any of the symptoms for more than a brief period, you should seek medical attention.

Tests for atrial tachycardia include an EKG which shows the rhythm of the heart. Other tests include a Holter monitor or a loop recorder which records the heart's rhythm for a longer period. 

Treatment for atrial tachycardia includes medications to slow the heart rate down or adjust the heart rhythm. Another method is cardioversion which shocks the heart back into a normal rhythm. Another way of treatment is an ablation procedure in which the area of the heart producing the abnormal signals in heated and destroyed.

 

Enhancing Healthcare Team Outcomes

In a patient with unstable atrial tachycardia, all healthcare staff must work together effectively for optimal care for the patient. Communication, proper training and clear team roles are essential in any rapid response team or code blue situation.  A study at Vancouver General Hospital showed that nurses felt the team performed better after training and with assigned team roles. Before practice, many nurses noted that it was unclear who the team leader was and who had which functions. It is essential to have these skills and roles established at any institution caring for patients with conditions, such as atrial tachycardia, who could become unstable.




Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Paroxysmal Atrial Tachycardia - Questions

Take a quiz of the questions on this article.

Take Quiz
What is the acute treatment for paroxysmal atrial tachycardia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the preferred therapy for a normotensive patient with paroxysmal atrial tachycardia which is unaffected by carotid massage?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which arrhythmia is commonly seen in newborns?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
How is supraventricular tachycardia initially managed in neonates and infants?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following arrhythmias commonly occurs in newborns?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A newborn has poor peripheral pulses, diaphoresis, mild cyanosis, hepatomegaly, and cardiomegaly. The heart rate is 240 and the respiratory rate is 55. What is the most likely cause of the neonate's congestive heart failure?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 71-year old has developed paroxysmal atrial tachycardia with a heart rate of 180 bpm. It is decided to use overdrive pacing to control his heart rate. Which of the following is false about this technique?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Paroxysmal Atrial Tachycardia - References

References

Page RL,Joglar JA,Caldwell MA,Calkins H,Conti JB,Deal BJ,Estes NA III,Field ME,Goldberger ZD,Hammill SC,Indik JH,Lindsay BD,Olshansky B,Russo AM,Shen WK,Tracy CM,Al-Khatib SM, 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart rhythm. 2016 Apr;     [PubMed]
Wu RC,Berger R,Calkins H, Catheter ablation of atrial flutter and macroreentrant atrial tachycardia. Current opinion in cardiology. 2002 Jan;     [PubMed]
Knecht S,Veenhuyzen G,O'Neill MD,Wright M,Nault I,Weerasooriya R,Miyazaki S,Sacher F,Hocini M,Jaïs P,Haïssaguerre M, Atrial tachycardias encountered in the context of catheter ablation for atrial fibrillation part ii: mapping and ablation. Pacing and clinical electrophysiology : PACE. 2009 Apr;     [PubMed]
Hirai Y,Nakano Y,Yamamoto H,Ogi H,Yamamoto Y,Suenari K,Oda N,Ueda S,Makita Y,Kajihara K,Kihara Y, Pulmonary artery mapping for differential diagnosis of left-sided atrial tachycardia. Circulation journal : official journal of the Japanese Circulation Society. 2013;     [PubMed]
Nakasuka K,Miyamoto K,Noda T,Kamakura T,Wada M,Nakajima I,Ishibashi K,Inoue Y,Okamura H,Nagase S,Aiba T,Kamakura S,Shimizu W,Noguchi T,Anzai T,Yasuda S,Ohte N,Kusano K,     [PubMed]
Arsura E,Lefkin AS,Scher DL,Solar M,Tessler S, A randomized, double-blind, placebo-controlled study of verapamil and metoprolol in treatment of multifocal atrial tachycardia. The American journal of medicine. 1988 Oct;     [PubMed]
Arsura EL,Solar M,Lefkin AS,Scher DL,Tessler S, Metoprolol in the treatment of multifocal atrial tachycardia. Critical care medicine. 1987 Jun;     [PubMed]
Kouvaras G,Cokkinos DV,Halal G,Chronopoulos G,Ioannou N, The effective treatment of multifocal atrial tachycardia with amiodarone. Japanese heart journal. 1989 May;     [PubMed]
Chen SA,Chiang CE,Yang CJ,Cheng CC,Wu TJ,Wang SP,Chiang BN,Chang MS, Sustained atrial tachycardia in adult patients. Electrophysiological characteristics, pharmacological response, possible mechanisms, and effects of radiofrequency ablation. Circulation. 1994 Sep;     [PubMed]
Katritsis DG,Josephson ME, Classification, Electrophysiological Features and Therapy of Atrioventricular Nodal Reentrant Tachycardia. Arrhythmia     [PubMed]
Weber R,Letsas KP,Arentz T,Kalusche D, Adenosine sensitive focal atrial tachycardia originating from the non-coronary aortic cusp. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009 Jun;     [PubMed]
Ghzally Y,Gerasimon G, Catheter Ablation 2018 Jan;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatrics-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatrics-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatrics-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatrics-Medical Student. When it is time for the Pediatrics-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatrics-Medical Student.