Cooling Techniques For Hyperthermia


Article Author:
Deena Wasserman


Article Editor:
Megan Healy


Editors In Chief:
David Wood
Andrew Wilt
Mary Cataletto


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes


Updated:
6/16/2019 7:42:00 PM

Introduction

Hyperthermia is defined as a body temperature greater than 40 C. Several conditions can cause hyperthermia. In sepsis, the immunologic reaction to the infection most often manifests as a fever. Some toxic ingestions and withdrawal states can cause elevated body temperature. Certain medication reactions can also cause hyperthermia, such as in neuroleptic malignant syndrome. The most common disease that can be treated by cooling alone is heat-related illness and heat stroke.

Heat-related illness is a spectrum of disease that occurs when the body's thermoregulatory system fails. Elevated core body temperature associated with orthostatic hypotension, tachycardia, diaphoresis, and tachypnea characterize heat exhaustion. Heat stroke is defined as elevated core body temperature plus central nervous system involvement (delirium, decreased the level of consciousness, or ataxia). Heat-related illness most often affects athletes (exertional hyperthermia), but can also occur during the warm weather months or in locations with extreme temperatures. Patients with impaired thermoregulation such as those at extremes of age, the obese or mentally ill are at higher risk. The definitive treatment for heat-related illness is total body cooling.

Conduction and evaporation are the two modes of cooling employed in the treatment of heat-related illness. Studies have shown ice-water immersion to be the most rapidly effective. However, there are obvious barriers to performing this in an emergency department. Marathons and other athletic events that see frequent heat-related illness sometimes have this capability. Evaporation (mist and fan) is the second most rapid way to cool a patient. Ice packs to the groin, axilla, neck, and areas near other great vessels have been shown to be less effective. Cooled intravenous fluids have been studied, but there is no clear consensus on their benefit (preservation of neurologic function) versus potential harm (induced shivering), but they may be considered. This activity will discuss the procedure for performing evaporative cooling with other adjunct methods in the emergency department. 

Of note, there are commercially available products designed for cooling; these range from invasive cooling catheters to non-invasive adhesive pads that circulate chilled water. These devices were designed for targeted hypothermia post-cardiac arrest. However, they can be used for heat-related illness when available. There is limited literature comparing these devices to the traditional methods.

The priority in heat-related illness is early recognition and intervention. Military and sports literature has identified 40 C as the target, and the faster the target is achieved, the lower the patient mortality.[1]

Indications

Indications for cooling include any signs of heat-related illness in the presence of an elevated body temperature. Previously, heat-related illness has been defined as core body temperature greater than 40 C. However, any elevation above normal body temperature in a symptomatic patient is an indication to consider cooling. The objective is to rapidly decrease the temperature below 40 C, with the final goal of reaching normal range (36 C to 38 C). It is important to note if the patient's other vital signs, like hemodynamic instability, indicate severe heat stroke, in which case, rapid cooling is the most crucial intervention to stabilize the patient.[2]

Contraindications

The only absolute contraindication to cooling is a normal or low body temperature. Hyperthermia in a patient may be a sign of sepsis, toxic ingestion, or withdrawal, or another etiology, in which case disease-specific treatment should not be overlooked. Care should be taken to prioritize usual resuscitation and emergent management of airway, breathing, and circulation.

Equipment

There are several cooling methods available in the emergency department with standard equipment, such as:

  • Cooling blanket
  • Cold saline
  • Ice packs
  • Foley catheter
  • Sheets/towels.

Additional equipment that may be useful includes a spray bottle and a fan.

Personnel

All of the cooling techniques described in this article can be performed by a single provider. However, additional personnel will allow for faster cooling utilizing parallel interventions.

Preparation

In preparation, the patient should be exposed completely, and intravenous access established. When available, it is recommended to place the patient on a cardiac monitor. Additionally, an intra-cavitary thermometer may be placed to monitor core body temperature closely. Commonly, esophageal, rectal, and bladder probes are used.

Technique

Continuous application of cold water to the skin can be achieved by either sponging the patient or using a spray bottle. Placing a fan to blow directly on the patient while also spraying or sponging will increase the rate of evaporation, and thereby, will more rapidly decrease body temperature. Another option is to submerge a sheet in cold water and then wring it out, and then wrap the patient in the damp sheet. This can be changed and re-submerged when it is no longer cool. The downside of these methods is that they require continuous reapplication of the water and ice to maintain efficacy.

Another option is to apply ice packs to the patient. The areas that are most effective in cooling core temperature are the groin, axillae, neck, and torso. Cold saline can be infused with care to monitor for resultant shivering. If the patient has a foley catheter, it can be used to irrigate the bladder with cold saline as well. More frequent ice pack changes and reapplication of cold water will allow for more rapid cooling.[3][4]

Complications

Overall, cooling is a useful intervention that has few complications. The patient's vital signs must be monitored closely during the cooling process. As mentioned, patients should be monitored for shivering, which will hinder cooling efforts. Critically ill patients may further decompensate during cooling. Additionally, if a patient's body temperature drops below normal (36 C), they will be at risk for the sequelae of hypothermia including arrhythmias and coagulopathy. An important organ to monitor during the cooling process is the skin. It is susceptible to damage from prolonged exposure to ice. Covering ice packs with a towel or sheet and regularly adjusting the site of application will mitigate this risk.[5][6][7][8][5]

Clinical Significance

In managing heat-related illness and heat stroke, decreasing core body temperature is the most critical intervention. Cooling may also be performed as an adjunct to the usual therapies for numerous conditions which may cause hyperthermia secondarily. The techniques described are easy, simple, and effective ways of cooling a patient in the emergency department. They require little training and can be performed by an individual provider. Additionally, they are applicable in many environments. Rapidly identifying patients who would benefit from this intervention is the key to effective management.[9][10]

Enhancing Healthcare Team Outcomes

Hyperthermia is not an uncommon presentation to the emergency room. Some of these patients may require systemic cooling to prevent neurological damage. In managing heat-related illness and heat stroke, decreasing core body temperature is the most critical intervention. The cooling is best done with a multidisciplinary team that includes a neurologist, internist, emergency department physician, and ICU nurses

Cooling may also be performed as an adjunct to the usual therapies for numerous conditions which may cause hyperthermia secondarily. Rapidly identifying patients who would benefit from this intervention is the key to effective management.[9][10]

The outcomes in most patients who are promptly treated are good.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Cooling Techniques For Hyperthermia - Questions

Take a quiz of the questions on this article.

Take Quiz
A 17-year-old male who is obese presents to the emergency department agitated, hallucinating, and confused. His temperature is 105 F. Which of the following is indicated?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is true regarding the use of a cooling blanket?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Where should ice packs be applied when cooling a patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Cooling Techniques For Hyperthermia - References

References

Simple and effective method to lower body core temperatures of hyperthermic patients., O'Connor JP,, The American journal of emergency medicine, 2017 Jun     [PubMed]
Novel application of chemical cold packs for treatment of exercise-induced hyperthermia: a randomized controlled trial., Lissoway JB,Lipman GS,Grahn DA,Cao VH,Shaheen M,Phan S,Weiss EA,Heller HC,, Wilderness & environmental medicine, 2015 Jun     [PubMed]
Effectiveness of Ice-Sheet Cooling Following Exertional Hyperthermia., Butts CL,Spisla DL,Adams JD,Smith CR,Paulsen KM,Caldwell AR,Ganio MS,McDermott BP,, Military medicine, 2017 Sep     [PubMed]
Optimizing Cold-Water Immersion for Exercise-Induced Hyperthermia: An Evidence-Based Paper., Nye EA,Edler JR,Eberman LE,Games KE,, Journal of athletic training, 2016 Jun 2     [PubMed]
Evaluation of Various Cooling Systems After Exercise-Induced Hyperthermia., Tan PM,Teo EY,Ali NB,Ang BC,Iskandar I,Law LY,Lee JK,, Journal of athletic training, 2017 Feb     [PubMed]
Krishnan SS,Nigam P,Bachh O,Vasudevan MC, Quad Fever: Treatment through Lowering of Ambient Temperature. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine. 2018 Jan;     [PubMed]
Lovett ME,Moore-Clingenpeel M,Ayad O,O'Brien N, Reduction of hyperthermia in pediatric patients with severe traumatic brain injury: a quality improvement initiative. Journal of neurosurgery. Pediatrics. 2018 Feb;     [PubMed]
Liu G,Li ZG,Gao JS, Hypothermia in neonatal hypoxic-ischemic encephalopathy (HIE). European review for medical and pharmacological sciences. 2017 Oct;     [PubMed]
Bindu B,Bindra A,Rath G, Temperature management under general anesthesia: Compulsion or option. Journal of anaesthesiology, clinical pharmacology. 2017 Jul-Sep;     [PubMed]
Wasserman DD,Healy M, EMS, Methods To Cool A Patient In The Field 2019 Jan;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatric. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatric, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatric, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatric. When it is time for the Pediatric board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatric.