21 Hydroxylase Deficiency


Article Author:
Liliana Burdea


Article Editor:
Magda Mendez


Editors In Chief:
David Wood
Andrew Wilt
Mary Cataletto


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes


Updated:
6/16/2019 7:12:21 PM

Introduction

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder, caused by the deficiency of one of the enzymes required for the synthesis of cortisol in the adrenal glands. 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia (more than 90% of the cases). Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment.[1][2][3]

Prenatal diagnosis and treatment of affected females are very important, to minimize genital virilization. Because 21-hydroxylase deficiency is often undiagnosed in affected males until they have severe adrenal insufficiency, all US states and many other countries have instituted newborn screening programs that measure 17-hydroxyprogesterone concentration). Newborn screening can detect almost all infants with classic CAH and some infants with nonclassic CAH. Although false-negative results are uncommon, false-positive results are usually seen in premature infants; therefore, serial measurements of 17-hydroxyprogesterone are advised for premature infants. A positive newborn screening test for CAH must be confirmed by a second plasma sample (17-hydroxyprogesterone), and serum electrolytes should be measured.

This activity highlights the diagnosis and treatment of 21 hydroxylase deficiency.

Etiology

CAH is an autosomal recessive disorder. The activity of 21-hydroxylase is mediated by cytochrome p450c21, found in the endoplasmic reticulum.[4][5][6]

The 21-hydroxylase genes (CYP21) lie within the class III region of the human major histocompatibility complex on chromosome 6. The CYP21 gene structure contains both CYP21 and a pseudogene (CYP21P). CYP21 is the active gene. More than 90% of mutations causing 21-hydroxylase deficiency are recombination between CYP21 and CYP21P.

Multiple gene defects have been found. Several mutations entirely prevent synthesis of a functional protein; whereas, others are missense mutations that yield enzymes with 1% to 50% of normal activity. Disease severity correlates well with the mutations carried by an affected individual; for example, patients with a salt-wasting disease usually carry mutations on both alleles that destroy enzymatic activity.

Patients are frequently compound heterozygotes for different types of mutations (i.e., one allele is less-severely affected than the other), in which case the severity of disease expression is largely determined by the activity of the less-severely affected of the 2 alleles.

Molecular genetic testing of the CYP21 gene is available and can detect common mutations and deletions in the various forms in up to 95% of affected individuals.

Epidemiology

Congenital adrenal hyperplasia occurs among all races. Worldwide incidence of classical 21-hydroxylase-deficient CAH is 1 in 15,000 to 20,000 births. Approximately 70% of the affected infants have the salt-wasting form, and 30% have the simple virilizing form.[7][8]

Nonclassic congenital adrenal hyperplasia has a prevalence of approximately 1 in 1000 in general population but occurs most frequently in specific ethnic groups such as Ashkenazi Jews and Hispanics.

Pathophysiology

Steroid 21-hydroxylase (CYP21, P450c21) is a cytochrome e P-450 enzyme located in the endoplasmic reticulum. It hydroxylates 17-hydroxyprogesterone to 11-deoxycortisol, a precursor of cortisol and also hydroxylates progesterone to deoxycorticosterone, a precursor of aldosterone. Both hormones (cortisol and aldosterone) are deficient in the most-severe, ’salt-wasting’ form of the disease.[9]

Due to the loss of this enzyme function, patients with 21-hydroxylase deficiency cannot synthesize cortisol efficiently, and as a result, the ACTH levels are high, leading to hyperplasia of the adrenal cortex and overproduction of cortisol precursors. Some of these precursors are used for the synthesis of sex steroids, which may cause signs of androgen excess, including ambiguous genitalia in newborn girls and rapid postnatal growth in both sexes. Aldosterone deficiency may lead to salt wasting with consequent failure to thrive, hypovolemia, and shock.

History and Physical

Classification

Classic 21-Hydroxylase Deficiency

Salt-wasting (severe form, with a defect in cortisol and aldosterone biosynthesis)

Approximately 75% of patients with classic 21-hydroxylase deficiency have the salt-wasting type. It is the most severe form of the disease, and it is most often associated with large gene deletions or intron mutations that result in no enzyme activity.

The biochemical and clinical abnormalities of the classic form manifest both prenatally and postnatally. Physicians recognize the condition in infant females in the neonatal period because of ambiguous genitalia compared with that of infant male. Males have normal genitalia and, in the case of the salt-wasting form, they can present with nonspecific symptoms like vomiting, dehydration, and poor feeding at ages 1 to 3 weeks. Hence, the diagnosis in boys can be delayed or missed.

Since aldosterone regulates sodium homeostasis, untreated patients will have excessive renal sodium excretion resulting in hypovolemia and hyperreninemia. These patients cannot excrete potassium efficiently and are prone to hyperkalemia, especially in infancy. In addition, accumulated steroid precursors may directly antagonize the mineralocorticoid receptor and exacerbate mineralocorticoid deficiency, particularly in untreated patients. Progesterone is well known to have anti-mineralcorticoid effects.

Cortisol deficiency contributes to poor cardiac function, poor vascular response to catecholamine, a decreased glomerular filtration rate, and increased secretion of antidiuretic hormone. Cortisol and aldosterone deficiency together cause hyponatremic dehydration and shock in inadequately treated patients.

Since high levels of glucocorticoids are needed for normal development of the adrenal medulla, as well as, for expression of the enzymes required to synthesize catecholamines, patients with salt-wasting type may also have catecholamine deficiency, further increasing the shock.

Females are exposed to high systemic levels of adrenal androgens from week 7 of gestation. Thus, they have ambiguous genitalia at birth: a large clitoris, rugated and potentially fused labia majora, and a common urogenital sinus instead of separate urethra and vagina. The uterus, fallopian tubes, and ovaries are normally formed, but there is no development of Wolffian ducts.

Postnatally, in untreated or inadequately treated patients, long-term exposure to high sex hormones promotes rapid somatic growth and advanced bone age. Linear growth is affected, even with close therapeutic monitoring. Pubic and axillary hair may develop early. Clitoral growth may continue in girls. Young boys may have penile growth despite having small testes. Long-term exposure to androgens may activate the hypothalamic-pituitary-gonadal axis, causing centrally mediated precocious puberty.

Girls may present with oligomenorrhea or amenorrhea in adolescence. As surgical, medical, psychological treatments have improved, more women with 21-hydroxylase deficiency, have completed pregnancies and giving birth.

The prevalence of testicular adrenal rests in boys with classic CAH aged 2 to 18 years varies from 21% to 28%. These so-called testicular adrenal rest tumors are benign, often related to suboptimal therapy, and usually, a decrease in size after optimization of glucocorticoid therapy. Testicular masses in boys with classic CAH are usually bilateral and smaller than 2 cm in diameter and therefore not palpable but detectable by ultrasound.

Simple Virilizing (normal aldosterone biosynthesis)

Approximately 25% of patients with classic 21-hydroxylase deficiency present with simple virilization without salt wasting. The simple virilizing form most commonly results from point mutations that lead to amino acid substitution, causing low but detectable enzyme activity resulting in adequate aldosterone secretion, but decreased levels of cortisol.

Females present at birth with ambiguous genitalia. Without newborn screening, affected boys are diagnosed in childhood when signs of androgen excess develop. Later diagnosis is associated with greater difficulty in achieving hormonal control, and short stature.

Non-classic 21-Hydroxylase Deficiency (mild form)

The nonclassic or late-onset form is more common, occurring in 0.1% to 0.2% in the general white population and 1% to 2% among Ashkenazi Jews. Females with the nonclassic form may be compound heterozygotes with a classic mutation and variant allele or heterozygotes with two variant alleles, allowing 20% to 60% of normal enzymatic activity.

Compound heterozygote females have a less severe phenotype, and clinical presentation varies. Females may present at any age but usually not younger than 6 months. Heterozygote females may have mild biochemical abnormalities but no clinically important endocrine disorder.

Patients with nonclassic form, have normal levels of cortisol and aldosterone at the expense of mild to moderate overproduction of sex hormones precursors. Newborn screening can detect nonclassic cases, but most are missed because of relatively low baseline levels of 17 hydroxyprogesterone.

Hirsutism is the single most common symptom at presentation, followed by oligomenorrhea and acne. Thus, nonclassic 21-hydroxylase deficiency and polycystic ovarian syndrome may present in similar ways.

Evaluation

 The screening workup should include:

  • Newborn screening programs check for 21-hydroxylase deficiency
  • 17-hydroxyprogesterone will be very high (usually greater than 1000 ng/dL) in a patient with the classic form
  • Hyperkalemia, hyponatremia, low aldosterone, and high plasma renin activity (PRA), particularly the ratio of PRA to aldosterone, are markers of impaired mineralocorticoid synthesis
  • An ACTH stimulation test should be performed to evaluate adrenal function and differentiate among the various potential enzymatic defects. Administration of 0.25 mg of cosyntropin (a synthetic ACTH) provides a pharmacologic stimulus to the adrenal glands, maximizing hormone secretion.
  • A full adrenal profile, including measurement of 17-OHP, cortisol, deoxycorticosterone, 11-deoxycortisol, 17-hydroxypregnenolone, dehydroepiandrosterone (DHEA), and androstenedione, should be obtained immediately before and 60 minutes after cosyntropin administration.
  • Nomograms are available for interpreting the results 
  • In an infant with ambiguous genitalia, do karyotype to establish the chromosomal sex
  • The pelvic ultrasound should be done to check for uterus or associated renal anomalies
  • A bone age study is helpful in patients with precocious pubic hair
  • In patients with signs of acute adrenal failure, CT of the adrenal glands can be done to exclude adrenal hemorrhage
  • Urogenitography for defining the anatomy of the internal genitalia

Treatment / Management

Acute Adrenal Crisis

  • Is a medical emergency
  • Initial management should be fluid resuscitation: Intravenous (IV) bolus of isotonic sodium chloride solution (20 mL/kg). Repeated boluses may be needed.
  • Administer dextrose if the patient is hypoglycemic and must be rehydrated with fluid after the bolus dose to prevent hypoglycemia
  • Stress doses of hydrocortisone (100 mg/m2 per day) are vital in the management and should be given as early as possible, concomitant with IV fluid treatment.
  • Central access and vasopressors, along with higher glucose concentrations, may be required in profoundly ill patients.
  • Life-threatening hyperkalemia may require additional therapy with potassium-lowering resin, IV calcium, insulin, and bicarbonate.

Positive Newborn Screen

Newborn screening for CAH is routinely performed in all 50 US states and at least 40 other countries.[4][10][11]

  • A positive newborn screening test for CAH must be confirmed by a second plasma sample (17-hydroxyprogesterone), and serum electrolytes should be measured.
  • After the confirmatory blood sample is obtained, treatment doses of glucocorticoid and mineralocorticoid should be initiated in all infants in whom CAH is a consideration, to prevent the potentially life-threatening manifestations of an adrenal crisis.
  • If the physician chooses not to initiate treatment while awaiting confirmatory steroid hormone measurements, serum electrolytes should be measured daily.
  • A pediatric endocrinologist should manage these patients.

Long-Term Management

The goal of therapy is to reduce excessive androgen secretion by replacing the deficient hormones. Proper treatment prevents adrenal crisis and virilization, allowing normal growth and development, normal pubertal development, sexual function, and fertility.

Glucocorticoids

  • Cortisol replacement: Oral hydrocortisone, in three divided doses of 10 to 20 mg/m2 per day.
  • Patients with classic 21-hydroxylase deficiency require long-term glucocorticoid treatment to inhibit excessive secretion of CRH and ACTH and reduce the abnormally high serum concentrations of adrenal androgens.
  • Hydrocortisone is the treatment of choice because of its short half-life and minimal growth suppressive effect.
  • The efficacy of treatment is best assessed by monitoring ACTH, 17-OHP, DHEA, and androstenedione. A target 17-OHP range of 500 to 1000 ng/dL, although still higher than normal, helps to avoid the adverse effects of overtreatment. Children also should have an annual bone age radiograph and careful monitoring of linear growth
  • Older children and adolescents, where growth is complete, may be treated with prednisone (5 to 7.5 mg daily in 2 divided doses ) or once-daily dexamethasone (0.25 to 0.5 mg).

Mineralocorticoids

  • Infants born with the salt-wasting form of 21OHD require replacement with mineralocorticoids. Fludrocortisone (usually 0.1 to 0.2 mg, but occasionally patients require up to 0.4 mg per day) and sodium chloride (1 to 2 g, each gram of sodium chloride contains 17 mEq of sodium)
  • The sodium content of human milk or most infant formulas are about eight mEq/L, and is insufficient to compensate for sodium loses in these infants.
  • Plasma Renin activity levels may be used to monitor the effectiveness of mineralocorticoid and sodium replacement. Hypotension, hyperkalemia, and elevated renin levels suggest the need to increase the dose, whereas hypertension, tachycardia, and suppressed PRA production are clinical signs of overtreatment.
  • Excessive increases in fludrocortisone dosage also may retard growth.

Surgical Care

Infants with ambiguous genitalia require surgical evaluation and, if needed, plans for corrective surgery. Risks and benefits of surgery should be fully discussed with parents of affected females.

Significantly virilized females usually undergo surgery before 1 year of age. If there is severe clitoromegaly, the clitoris is reduced, with partial excision of the corporal bodies and preservation of the neurovascular bundle. Vaginoplasty and correction of the urogenital sinus usually are performed at the time of clitoral surgery. Revision in adolescence is often necessary.

Bilateral adrenalectomy for CAH is controversial. May be considered only in select cases that have failed medical therapy, especially in rare cases of adult females with salt-wasting CAH and infertility. The risk for noncompliance must be considered before surgery.

Differential Diagnosis

  • CAH due to 11- beta-hydroxylase Deficiency
  • CAH due to 3 beta-hydroxysteroid dehydrogenase deficiency
  • Five-alpha-reductase deficiency
  • Adrenal hypoplasia
  • Adrenal insufficiency
  • Androgen insensitivity syndrome
  • Bilateral adrenal hemorrhage
  • Other causes of hyperkalemia/hyponatremia
  • Hypertrophic pyloric stenosis
  • Obstructive uropathy
  • Polycystic ovarian syndrome
  • Defects in testosterone synthesis
  • Denys-Drash syndrome
  • Disorders of gender development
  • Familial glucocorticoid deficiency

Prognosis

Children who have CAH often are tall in early childhood, but ultimately are short in adulthood. Recent data suggest that patients born with CAH are about 10 cm shorter than their parentally based targets. Advanced bone age and central precocious puberty due to androgen excess causing early epiphyseal fusion are the primary factors. In addition, treatment of CAH with glucocorticoids can suppress growth and diminish final height. Experimental treatment with growth hormone and luteinizing hormone-releasing hormone analog (to hold off puberty) are reported to lead to an average height gain of 7.3 cm.[12][13][14]

The influence of prenatal sex steroid exposure on personality is controversial. More consistent evidence regarding the effects of androgens comes from gendered play activities of young children.

Most children with CAH manifest normal neuropsychological development. Moreover, despite a tendency toward male gender role behavior and homoerotic fantasy, most girls with CAH identify as females and exhibit a heterosexual preference. Both male and female patients are fertile but have reduced fertility rates. This consequence is due to biologic, psychological, social, and sexual factors. 

Bone density is reported to be normal in most patients. The prevalence of metabolic abnormalities such as obesity, insulin resistance, dyslipidemia, and polycystic ovarian syndrome has been reported to be high due to the diseases themselves or glucocorticoid treatment

This disease and treatment complications and long-term consequences are challenging for practitioners. Multiple subspecialty professionals should be involved in management. Gene therapy shows potential for a  CAH cure.

Complications

Complications of congenital adrenal hyperplasia are common. If the patient does not get enough glucocorticoids, he or she can develop adrenal insufficiency and further virilization in the virilizing forms. If a patient receives excessive glucocorticoids, he or she can develop growth failure, obesity, striae, hypertension, hyperglycemia, and cataracts.

The complications of excess mineralocorticoid administration include hypertension and hypokalemia.

Aldosterone deficiency may lead to salt wasting with consequent failure to thrive, hypovolemia, and shock.

Pearls and Other Issues

  1. Both molecular genetic testing of the fetus and prenatal treatment of mothers with dexamethasone are available.
  2. Dexamethasone must be given before the seventh to eighth week of gestation to suppress the fetal pituitary-adrenal axis before virilization occurs.
  3. In a patient with ambiguous genitalia, the diagnosis is not difficult; however, in affected males with no symptoms, newborn screening may be lifesaving. Without it, the diagnosis can be missed until the patient is in acute adrenal crisis.
  4. The objective of treatment of CAH is to prevent adrenal crisis and virilization and to achieve normal growth, pubertal development, sexual function, and fertility. Both male and female patients are fertile but have reduced fertility rates. This consequence is due to biologic, psychological, social, and sexual factors.
  5. The prevalence of metabolic abnormalities such as obesity, insulin resistance, dyslipidemia, and polycystic ovarian syndrome has been reported to be high due to the diseases themselves or glucocorticoid treatment.

Enhancing Healthcare Team Outcomes

Congenital adrenal hyperplasia is a relatively rare autosomal recessive disorder but if the diagnosis it carries significant mental and physical morbidity and mortality. The condition is best managed by a multidisciplinary team that includes a geneticist, endocrinologist, pediatrician, nurse, and a mental health counselor.  Prenatal diagnosis and treatment of affected females is very important, to minimize genital virilization. Because 21-hydroxylase deficiency is often undiagnosed in affected males until they have severe adrenal insufficiency, all US states and many other countries have instituted newborn screening programs that measure 17-hydroxyprogesterone concentration). Newborn screening can detect almost all infants with classic CAH and some infants with nonclassic CAH.[15]


  • Image 6288 Not availableImage 6288 Not available
    Contributed by Research Gate
Attributed To: Contributed by Research Gate

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

21 Hydroxylase Deficiency - Questions

Take a quiz of the questions on this article.

Take Quiz
A newborn with ambiguous genitalia and hyperkalemia is female (46, XX) and is diagnosed with a 21-hydroxylase deficiency. Which characteristic is seen in the receptors that bind to adrenal hormones?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which serum abnormality is commonly found in congenital adrenal hyperplasia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the mode of inheritance of congenital adrenal hyperplasia due to 21 hydroxylase deficiency?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following metabolites can be measured to screen for 21-hydroxylase deficiency?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following enzymatic deficiencies presents with ambiguous genitalia only in females?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
17-hydroxyprogesterone is increased in which of the following disorders?

(Move Mouse on Image to Enlarge)
  • Image 5641 Not availableImage 5641 Not available
    Contributed by Häggström M, Richfield D
Attributed To: Contributed by Häggström M, Richfield D



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A newborn, 46 XX, is born with ambiguous genitalia. The patient is diagnosed with congenital adrenal hyperplasia secondary to 21-hydroxylase deficiency. What laboratory values would be expected?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You are called to the newborn nursery to evaluate a baby with ambiguous genitalia.The pregnancy was uncomplicated and mother was not taking any medications other than prenatal vitamins. You examined the baby and note a phallus which is 2 cm in stretched length, a 1-mm orifice at the base of the phallus, no obvious vaginal opening, and no palpable gonads. The rest of the physical exam is unremarkable. Of the following, which enzyme deficiency is the most common cause of these findings?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 9-day old female presents to the emergency department with recurrent vomiting after feeding for 1 day and irritability. His parents report the infant was doing well after birth and he had previously been breastfeeding well. He was born full term by normal spontaneous vaginal delivery with a birth weight of 3.2 kg. Vital signs reveal a temperature of 37 C, heart rate of 180 beats/minute, respiratory rate of 50/minute, and blood pressure of 56/30 mmHg. On physical examination, the newborn appears dehydrated and irritable with dry mucous membranes and a sunken anterior fontanelle. There is labial and clitoral enlargement noted. Laboratory studies reveal the sodium 129 mEq/L, potassium 5.8 mEq/L, chloride 110 mEq/L, bicarbonate 24 mEq/L, and glucose 40 mg/dL. A 20 ml/kg fluid bolus of 0.9% normal saline is given. Of the following, what is the most appropriate next step for this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You received a call from the state lab informing you that one of your patients had an abnormal newborn screen for congenital adrenal hyperplasia, with very high levels. Which of the following is true regarding newborn screening for congenital adrenal hyperplasia (CAH)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A baby with ambiguous genitalia is evaluated in the newborn nursery. What is the most severe complication of this disease?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
If both parents are congenital adrenal hyperplasia carriers, what is the risk of having a baby who has the disease?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A baby girl (XX) is born with ambiguous external genitalia and becomes severely hypotensive within a few days after delivery. What is most likely deficient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 32-year-old G1P1 female delivers a healthy 37-week female. The newborn is in no distress and has APGAR scores of 8 and 9 at 1 and 5 minutes respectively. The heart and lung exams reveal no significant findings. Red reflex is intact, the Ortolani and Bartlow tests reveal no hip click, reflexes are intact, and there is an enlarged clitoris. Two weeks later the mother brings the infant to the emergency department due to poor feedings and vomiting. Exam reveals the baby has not reached her initial birth weight. Which of the following is most likely expected on the patient's laboratory examination?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

21 Hydroxylase Deficiency - References

References

Tajima T, Health problems of adolescent and adult patients with 21-hydroxylase deficiency. Clinical pediatric endocrinology : case reports and clinical investigations : official journal of the Japanese Society for Pediatric Endocrinology. 2018     [PubMed]
McCann-Crosby B,Placencia FX,Adeyemi-Fowode O,Dietrich J,Franciskovich R,Gunn S,Axelrad M,Tu D,Mann D,Karaviti L,Sutton VR, Challenges in Prenatal Treatment with Dexamethasone. Pediatric endocrinology reviews : PER. 2018 Sep     [PubMed]
Nasir H,Ali SI,Haque N,Grebe SK,Kirmani S, Compound heterozygosity for a whole gene deletion and p.R124C mutation in CYP21A2 causing nonclassic congenital adrenal hyperplasia. Annals of pediatric endocrinology     [PubMed]
Speiser PW,Arlt W,Auchus RJ,Baskin LS,Conway GS,Merke DP,Meyer-Bahlburg HFL,Miller WL,Murad MH,Oberfield SE,White PC, Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. The Journal of clinical endocrinology and metabolism. 2018 Nov 1     [PubMed]
Nour MA,Gill H,Mondal P,Inman M,Urmson K, Perioperative care of congenital adrenal hyperplasia - a disparity of physician practices in Canada. International journal of pediatric endocrinology. 2018     [PubMed]
Dörr HG,Penger T,Albrecht A,Marx M,Völkl TMK, Birth Sizes of Neonates with Congenital Adrenal Hyperplasia Secondary to 21-Hydroxylase Deficiency. Journal of clinical research in pediatric endocrinology. 2018 Sep 4     [PubMed]
Daae E,Feragen KB,Nermoen I,Falhammar H, Psychological adjustment, quality of life, and self-perceptions of reproductive health in males with congenital adrenal hyperplasia: a systematic review. Endocrine. 2018 Oct     [PubMed]
Rama Chandran S,Loh LM, The importance and implications of preconception genetic testing for accurate fetal risk estimation in 21-hydroxylase congenital adrenal hyperplasia (CAH). Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2018 Jul 25     [PubMed]
Doleschall M,Török D,Mészáros K,Luczay A,Halász Z,Németh K,Szücs N,Kiss R,Tőke J,Sólyom J,Fekete G,Patócs A,Igaz P,Tóth M, [Steroid 21-hydroxylase deficiency, the most frequent cause of congenital adrenal hyperplasia]. Orvosi hetilap. 2018 Feb     [PubMed]
Yanase T,Tajima T,Katabami T,Iwasaki Y,Tanahashi Y,Sugawara A,Hasegawa T,Mune T,Oki Y,Nakagawa Y,Miyamura N,Shimizu C,Otsuki M,Nomura M,Akehi Y,Tanabe M,Kasayama S, Diagnosis and treatment of adrenal insufficiency including adrenal crisis: a Japan Endocrine Society clinical practice guideline [Opinion]. Endocrine journal. 2016 Sep 30     [PubMed]
Ishii T,Anzo M,Adachi M,Onigata K,Kusuda S,Nagasaki K,Harada S,Horikawa R,Minagawa M,Minamitani K,Mizuno H,Yamakami Y,Fukushi M,Tajima T, Guidelines for diagnosis and treatment of 21-hydroxylase deficiency (2014 revision). Clinical pediatric endocrinology : case reports and clinical investigations : official journal of the Japanese Society for Pediatric Endocrinology. 2015 Jul     [PubMed]
Bachelot A,Grouthier V,Courtillot C,Dulon J,Touraine P, MANAGEMENT OF ENDOCRINE DISEASE: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: update on the management of adult patients and prenatal treatment. European journal of endocrinology. 2017 Apr     [PubMed]
Khattab A,Yau M,Qamar A,Gangishetti P,Barhen A,Al-Malki S,Mistry H,Anthony W,Toralles MB,New MI, Long term outcomes in 46, XX adult patients with congenital adrenal hyperplasia reared as males. The Journal of steroid biochemistry and molecular biology. 2017 Jan     [PubMed]
King TF,Lee MC,Williamson EE,Conway GS, Experience in optimizing fertility outcomes in men with congenital adrenal hyperplasia due to 21 hydroxylase deficiency. Clinical endocrinology. 2016 Jun     [PubMed]
Hannah-Shmouni F,Stratakis CA, An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency. Reviews in endocrine     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatric. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatric, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatric, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatric. When it is time for the Pediatric board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatric.