Anatomy, Thorax, Heart Pulmonary Arteries


Article Author:
William Tucker


Article Editor:
Bracken Burns


Editors In Chief:
Eric Flake


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
12/9/2018 8:02:48 PM

Introduction

The main pulmonary artery and the subsequent right and left pulmonary arteries sit within the middle mediastinum. They arise from the right ventricle of the four-chambered heart and transport blood to the lungs. De-oxygenated blood from the body's somatic cells travels to the right atrium, then into the right ventricle, and through the main pulmonary artery and its branches before blood enters the lungs for oxygenation and gas exchange. These steps are all prerequisites for normal human physiologic function.

Structure and Function

The pulmonary arteries function to transport de-oxygenated blood from the right side of the heart to the lungs for oxygenation. These vessels serve as the conduit between the right side of the heart and the lungs. The right and left pulmonary arteries specifically provide blood flow to their respective lungs and further subdivide into the lobar, segmental, and sub-segmental arteries of the lungs before eventually becoming capillaries surrounded by alveoli. Described as a high capacitance, low-pressure system, pulmonary circulation is ideal for optimal gas exchange.[1]

As it leaves the right ventricle, the main pulmonary artery is typically short and wide. The main pulmonary artery is usually approximately 5 centimeters in length and 2-3 centimeters in diameter. The main pulmonary artery generally travels along the left of the ascending aorta as the great vessels leave the heart. It bifurcates at the level of the carina (T4 vertebral level) and just below the aortic arch at approximately a right angle to form the right and left pulmonary arteries.[1]

The right pulmonary artery supplies the right lung while the left pulmonary artery supplies the left lung. The right pulmonary artery courses posterior to the ascending aorta and anterior to the descending aorta. It lies anterior to the right mainstem bronchus. The left pulmonary artery passes anterior to the descending aorta and lies superior to the left mainstem bronchus. 

A common mnemonic used to remember the relationship between the pulmonary arteries and their respective mainstem bronchi is RALS meaning, the right pulmonary artery lies anterior to the right mainstem bronchus, and the left pulmonary artery lies superior to the left mainstem bronchus.

Embryology

Understanding the embryology of the pulmonary artery is imperative to demonstrate thorough anatomic knowledge on the subject. The most critical embryological components in the formation of the main pulmonary artery and the right and left pulmonary arteries are the sixth aortic arch, the truncus arteriosus, the conus cordis, and neural crest cells.[2]

The sixth aortic arch gives rise to both the right and left pulmonary arteries and the ligamentum arteriosum. The ligamentum arteriosum is actually the ductus arteriosus during fetal development. The ductus arteriosus serves to allow oxygenated fetal blood to bypass the developing lungs and move directly into the aorta. Both the right and left sixth aortic arches initially contribute to the development of pulmonary arterial flow, but as the right-sided arch degenerates, the left sixth arch contributes the vasculature for both pulmonary arteries. 

The intricate relationship of the truncus arteriosus, conus cordis, and neural crest cells in the fifth week of fetal development coordinates the proper formation of the right and left ventricular outflow tracts, the main pulmonary artery and ascending aorta, respectively.

Oppositional ridges form within the truncus arteriosus: one along the right superior aspect and the other along the left inferior aspect. The right ridge progresses distally and leftward, while the left ridge progresses distally and rightward, twisting as they meet. Simultaneously, oppositional swellings develop within the conus cordis along the right dorsal and left ventral aspects. Each of these ridges, or swellings, acts under the influence of neural crest cells. As the truncal ridges converge, they divide the truncus arteriosus into the main pulmonary artery and the ascending aorta. When the conus ridges converge, they form the right ventricular outflow tract, positioned anterolaterally, and the left ventricular outflow tract, positioned posteromedially.

Blood Supply and Lymphatics

Vasa vasorum supply the pulmonary artery wall with oxygen and nutrients while venous vasa vasorum clear waste products with venous drainage.[3]

The lymphatics of the pulmonary artery drain to the visceral thoracic nodal system, specifically the mediastinal lymph nodes.

Nerves

Innervation of the pulmonary artery is like that of other vessels. The cardiac nervous plexus supplies sympathetic and parasympathetic innervation. The nerve plexus is situated anterior to the bifurcation of the trachea and posterior to the splitting of the left and right pulmonary arteries. The sympathetic supply comes from both cervical and thoracic segments of the spinal cord. The vagus nerve supplies parasympathetic innervation.

Muscles

Smooth muscles within the tunica media of the arterial wall comprise the musculature of the pulmonary artery and its branches.[4] 

Physiologic Variants

Vascular anatomy is always subject to anatomic variation, and the pulmonary arterial vasculature is no exception. Pulmonary artery variants are usually discovered as incidental findings on imaging.

A well-documented variant of pulmonary arterial anatomy is the aberrant left pulmonary artery, also known as, the pulmonary sling. In this variation, the left pulmonary artery arises from the posterior aspect of the right pulmonary artery and passes superior to the right mainstem bronchus and between the esophagus and trachea.[5]

Another variant is unilateral proximal artery interruption. Here the pulmonary artery, right more commonly than left, ends blindly, as it enters the lung hilum although the vasculature within the lung itself is patent. To compensate for the interrupted artery the bronchial arteries supplying the affected lung will hypertrophy and participate in gas exchange. Transpleural arteries may also develop to further compensate for the decreased flow.[6]

One more variant of pulmonary artery anatomy is idiopathic dilatation of the pulmonary artery (IDPA). This diagnosis may or may not involve dilatation of the right and left pulmonary arteries as well and requires the exclusion of other causes of pulmonary artery distension or enlargement.[7]

Anatomic variation of the segmental and subsegmental pulmonary arteries is much more common.

Surgical Considerations

Understanding pulmonary artery anatomy is essential for all cardiothoracic surgery. Any surgical work done in and around the pulmonary artery puts at risk the other nearby structures of the heart and lungs, and iatrogenic injury to a pulmonary artery can have immediate and grave consequences.

Many surgeries directly involve the pulmonary arteries or the main pulmonary trunk. Congenital diseases requiring repair that involve the pulmonary artery and trunk are numerous and include: Tetralogy of Fallot, pulmonary atresia, pulmonary stenosis, double outlet right ventricle, truncus arteriosus, transposition of the great arteries, and patent ductus arteriosus. Pulmonic valve replacement, although rare in adults, involves access through the right ventricular outflow tract and affects the pulmonary trunk.

An operation directly involving the pulmonary arteries and their more distal branches is the pulmonary thromboendarterectomy for chronic thromboembolic pulmonary hypertension. Additionally, the pulmonary arteries can be the site of emboli that if clinically significant may require either surgical or catheter-directed embolectomy.

The above is not an extensive list of the surgical procedures or considerations involving the pulmonary trunk and arteries.

Clinical Significance

There are multiple clinical scenarios in which the pulmonary trunk and the pulmonary arteries play a significant role. Some of these pathological states are congenital while others result from adult-onset disease.

Pulmonary artery pressures can be measured with a Swan-Ganz catheter and provide important data in determining the extent of lung and left-sided heart disease. Mitral valve disease and aortic valve disease can cause extreme increases in pulmonary artery pressure and reflect the stress placed on the right-sided heart.

Pulmonary diseases, like pulmonary arterial hypertension, also cause increased pulmonary artery pressures. Again, these increased pressures are a direct reflection of the increased stresses on the right heart.[8]

A saddle pulmonary embolism can cause rapid onset hemodynamic instability and be a rare cause of sudden death. An embolus, or clot, lodged in the bifurcation of the main pulmonary artery and occluding the lumen of the pulmonary arteries on both the right and the left is termed a saddle pulmonary embolism.[9]

Congenital diseases like persistent truncus arteriosus and transposition of the great vessels are directly attributable to a failure of normal embryologic development involving the pulmonary artery.


  • Image 2055 Not availableImage 2055 Not available
    Contributed By Gray's Anatomy Plates
Attributed To: Contributed By Gray's Anatomy Plates

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Thorax, Heart Pulmonary Arteries - Questions

Take a quiz of the questions on this article.

Take Quiz
An 82-year-old man with type II diabetes mellitus and 80% occlusion of his left anterior descending artery is undergoing coronary artery bypass surgery. The anesthesia team has placed a Swan-Ganz catheter to monitor cardiac pressures throughout the operation. During placement of the Swan-Ganz, the balloon is inflated as the catheter is advanced through the right ventricle and into the pulmonary circulation. The catheter passes through a structure derived from which aortic arch?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 54-year-old male arrives at the emergency department in an ambulance complaining of sudden chest pain and dyspnea. His vitals include a blood pressure of 132/84 mmHg, pulse 115 beats/min, and respiratory rate 24. On physical exam, the patient is diaphoretic and wheezing in the right lower lobe. The EKG shows tachypnea, right axis deviation, and S1Q3T3 pattern. The patient is suspected to have a pulmonary embolism and is sent for spiral CT. A pulmonary embolism causes obstruction of a vessel that takes deoxygenated blood from the heart to the lungs. What is the vessel?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 53-year-old man fell asleep at the wheel and veered off the highway while driving. His vehicle then struck a tree at high speed. He was pronounced dead at the scene. If his cause of death is primarily related to the thoracic cavity, then the structure most likely responsible for traumatic rupture of the aorta attaches the aortic arch to which structure?

(Move Mouse on Image to Enlarge)
  • Image 7154 Not availableImage 7154 Not available
    Public domain from Wikipedia (Gray's Anatomy).
Attributed To: Public domain from Wikipedia (Gray's Anatomy).



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An infant is born, and the pediatrician notices shortly afterward that the child is tachypneic and has tachycardia. She also appears to be cyanotic. The concerned pediatrician orders a series of tests and echocardiography shows persistent truncus arteriosus. Failure of which cell type to behave appropriately likely caused this congenital cardiac defect?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which structure transports de-oxygenated blood from the right ventricle to the lungs for gas exchange?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
At the left lung hilum, the pulmonary artery travels in what relation to the left mainstem bronchus?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Thorax, Heart Pulmonary Arteries - References

References

Kandathil A,Chamarthy M, Pulmonary vascular anatomy & anatomical variants. Cardiovascular diagnosis and therapy. 2018 Jun     [PubMed]
Murillo H,Cutalo MJ,Jones RP,Lane MJ,Fleischmann D,Restrepo CS, Pulmonary circulation imaging: embryology and normal anatomy. Seminars in ultrasound, CT, and MR. 2012 Dec     [PubMed]
Parke WW, The vasa vasorum of the ascending aorta and pulmonary trunk and their coronary-extracardiac relationships. American heart journal. 1970 Dec     [PubMed]
Tucker WD,Mahajan K, Anatomy, Blood Vessels . 2018 Jan     [PubMed]
Backer CL,Idriss FS,Holinger LD,Mavroudis C, Pulmonary artery sling. Results of surgical repair in infancy. The Journal of thoracic and cardiovascular surgery. 1992 Apr     [PubMed]
Kieffer SA,Amplatz K,Anderson RC,Lillehei CW, Proximal interruption of a pulmonary artery. The American journal of roentgenology, radium therapy, and nuclear medicine. 1965 Nov     [PubMed]
Malviya A,Jha PK,Kalita JP,Saikia MK,Mishra A, Idiopathic dilatation of pulmonary artery: A review. Indian heart journal. 2017 Jan - Feb     [PubMed]
Frazier AA,Galvin JR,Franks TJ,Rosado-De-Christenson ML, From the archives of the AFIP: pulmonary vasculature: hypertension and infarction. Radiographics : a review publication of the Radiological Society of North America, Inc. 2000 Mar-Apr     [PubMed]
Mayo JR,Remy-Jardin M,Müller NL,Remy J,Worsley DF,Hossein-Foucher C,Kwong JS,Brown MJ, Pulmonary embolism: prospective comparison of spiral CT with ventilation-perfusion scintigraphy. Radiology. 1997 Nov     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pediatric-Developmental. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pediatric-Developmental, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pediatric-Developmental, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pediatric-Developmental. When it is time for the Pediatric-Developmental board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pediatric-Developmental.