Renal Calculi


Article Author:
Stephen Leslie
Hussain Sajjad


Article Editor:
Patrick Murphy


Editors In Chief:
Ishwarlal Jialal


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
10/8/2019 10:14:17 AM

Introduction

Renal calculi are a common cause of blood in the urine (hematuria) and pain in the abdomen, flank, or groin. They occur in one in 11 people at some time in their lifetimes with men affected 2 to 1 over women. Development of the stones is related to decreased urine volume or increased excretion of stone-forming components such as calcium, oxalate, uric acid, cystine, xanthine, and phosphate. Calculi may also be caused by low urinary citrate levels or excessive urinary acidity.[1][2][3]

Renal calculi present with excruciating pain and most patients present to the emergency department in agony. A single event does not cause kidney failure but recurrent renal calculi can damage the tubular epithelial cells, which can lead to functional loss of the renal parenchyma.

Etiology

Urolithiasis occurs when solutes crystallize out of urine to form stones. Urolithiasis may occur due to anatomic features leading to urinary stasis, low urine volume, dietary factors (e.g., high oxalate or high sodium), urinary tract infections, systemic acidosis, medications, or uncommonly genetic factors such as cystinuria. The most common cause of the stone disease is inadequate hydration and subsequent low urine volume. The other four most common factors contributing to urinary stone formation are hypercalciuria, hyperoxaluria, hyperuricosuria, and hypocitraturia.[4][5]

The four major types of renal calculi include

  • Calcium stones (due to hyperparathyroidism, renal calcium leak, hyperoxaluria, hypomagnesemia and hypocitraturia)
  • Uric acid stones are associated with pH less than 5, high intake of purine foods (fish, legumes, meat), or cancer. These stones may also be associated with gout
  • Struvite stones (caused by gram negative-urease positive organisms that breakdown urea into ammonia. Common organisms include pseudomonas, proteus, and klebsiella. E coli is not associated with struvite stones)
  • Cystine stones are due to an intrinsic metabolic defect causing the failure of the renal tubules to reabsorb cystine, lysine, ornithine, and arginine.

Many drugs are known to cause stones and include the following:

  • Atazanavir
  • Indinavir
  • Triamterene
  • Guaifenesin
  • Overuse of silicate
  • Sulfonamide

There also appears to be a genetic association to renal calculi. In some families, there may be mutations that cause a defect in the renal tubular handling of calcium and other substrates.

Epidemiology

Overall urinary stone prevalence in the United States has increased from 3.8% in 1970 to 8.8% in 2010. For patients who have a history of a previous urinary stone, recurrence rates approach 50% at ten years. There is traditionally a high incidence of urinary stones in the Southeastern and South Central United States, termed the “Stone Belt,” which probably reflects the hot weather climate and relative dehydration that occurs in these areas. Before the development of modern urologic techniques for treatment, mortality from untreated staghorn (infection) calculi was 27%. Currently, mortality from stone disease is rare, although there is still a significant rate (28%) of renal deterioration with certain stone types, particularly staghorn (struvite or infection) stones.[6][7]

Pathophysiology

Most urinary stones start as Randall's plaque at the junction of the nephron's collecting tubule and the renal pelvis in the papilla. These plaques start suburothelial and then gradually grow until they break through into the renal pelvis. Once in continuous contact with urine, layers of calcium oxalate typically start to form on the calcium phosphate nidus (all Randall's plaques are composed of calcium phosphate). Calcium oxalate stones tend to form when the urinary pH is under 7.2 while calcium phosphate will form in the more alkaline urine. Hyperparathyroidism and similar metabolic disturbances like renal tubular acidosis typically form stones that are primarily or significantly composed of calcium phosphate. Overly acidic urine is the primary cause of uric acid stones (not hyperuricosuria).[8][9]

The majority of renal calculi are made of calcium, followed by urare crystals. Supersaturation of the urine is the common denominator in all cases of renal calculi. In some cases, calcium oxalate stones may deposit in the renal papilla. Calcium phosphate stones usually precipitate in the basement membrane of the thin loop of Henle and may erode into the interstitium. The colicky pain s usually due to the dilatation and spasm of the ureter.

History and Physical

Patients with a stone disease will most commonly present with acute, severe flank pain that will often radiate to the abdomen and especially to the groin, testicle, and labia. It is often sharp and severe in nature. It may also be colicky. The pain is often associated with nausea and vomiting which is due to the embryological origins of the urogenital tract.

Renal colic usually peaks within 90-120 minutes and the pain radiation follows dermatomes T10-S4. The first phase may wake the patient up from sleep and the pain is steady, followed by waves of excruciating pain. The second phase is characterized by constant pain and may last 3-4 hours. The third phase is associated with mild pain relief but waves of pain may still persist. This phase may last 4-16 hours.

If infected, patients may also present with fever, chills, or other systemic signs of infection.  This condition, called pyonephrosis or obstructive pyelonephritis, is potentially severe and life-threatening, requiring emergency decompression surgery.[10]

Patients often present with hematuria as 85% of patients demonstrate at least microscopic hematuria on urinalysis.

The physical exam may reveal costovertebral tenderness and hypoactive bowel sounds. The testis and pubic area may also be tender to touch. Fever is rarely seen in renal colic but the presence of fever, pyuria, and leucocytosis may be indicative of pyelonephritis.

Evaluation

A urinalysis should be obtained on every patient with a suspected kidney stone.  Hematuria is usually present, but up to 15% of kidney stone patients will not demonstrate even microscopic hematuria. The presence of urinary crystals may suggest urolithiasis. Positive nitrites, leukocytes, and bacteria suggest infection which should be cultured and treated aggressively.[11]

A KUB can be obtained to screen for the presence of significant nephrolithiasis, but may often miss stones that are small, hidden by bowel or uncalcified. Ultrasound may be very useful for assessing obstruction and resultant hydronephrosis, especially in pregnancy where x-ray studies are discouraged. It can also be used to measure the resistive index which can suggest ureteral obstruction.

Resistive Index = (peak systolic velocity - end-diastolic velocity)/peak systolic velocity

Values of 0.70 or less are considered normal while higher values suggest obstructive uropathy. Bilateral high resistive indices suggest medical renal disease while a unilateral high resistive index (0.75 or higher) suggests an obstruction such as from a stone.  Once a ureteral stone has been identified, the lower the resistive index, the more likely the stone will pass spontaneously. [12]

Ultrasound can also identify uric acid and other non-calcific stones if they are large enough (usually greater than 4 mm), but it can also miss the presence of stones that are less than 5 mm.

The most sensitive and reliable test to diagnose urolithiasis is a non-contrast abdominal and pelvic CT scan, which will also provide information regarding obstruction with resultant hydronephrosis or concerns for infection.[13][14][15][16][17] Other labs to obtain would include a WBC with differential, and a urine culture if the patient is febrile or has a urinalysis suggestive of a possible infection.  The initial use of IV contrast for CT scans in patients with abdominal pain is not recommended.  In many cases, an atypical abdominal pain will ultimately turn out to be a kidney stone that has moved or the presence of a urological anatomical variant such as a horseshoe kidney.  Even without IV contrast, in most cases, the correct diagnosis can be made.  If contrast is absolutely necessary, doing the non-contrast study first eliminates urinary stones from consideration. Certainly, if the urinalysis is abnormal for blood or possible infection, a non-contrast abdominal and pelvic CT should be performed prior to using contrast which will make identification of any urinary stones far more difficult. If this recommendation is not followed, sooner or later contrast will be given to a patient who will ultimately be diagnosed with urinary stones.  Obscuring urinary stones with IV contrast can make it much more difficult to determine optimum treatment and possible surgery.[13][14][15][16][17]

If the CT is positive for stones, a simultaneous KUB should be done. This will provide information useful in tracking or following the progress of the stone, its degree of calcification, and its shape which cannot always be identified from the CT scan alone.[18]

Treatment / Management

Many stones may be watched conservatively as an outpatient, with intervention planned as an outpatient. Smaller stones (less than 5 mm) have a greater chance (90%) of passing on their own with medical expulsion therapy (usually tamsulosin, nifedipine or alfuzosin). Any hint of a urinary tract infection should be treated aggressively with antibiotics.[19][20][21]

Acute management requires IV hydration, analgesia, and antiemetic medications. Studies show that desmopressin can lower the pain of renal calculi. Anecdotal reports indicate that the use of calcium channel blockers can provide pain relief due to relaxation of the ureter and helps passage of the stone distally. Others recommend the use of alpha-blockers. The urine should be strained for stones.

There are several cases where urgent intervention is required. 

  1. An obstructing stone in a patient with a urinary tract infection, fever or sepsis. (This is called pyonephrosis or obstructive pyelonephritis and requires urgent surgical decompression by urology or interventional radiology)
  2. Nausea or pain uncontrolled with outpatient management 
  3. An obstructing stone in a solitary kidney
  4. Any degree of simultaneous bilateral obstruction which can easily lead to renal failure
  5. Any degree of obstruction with a rising creatinine

In the case of urinary tract infection or urosepsis with an obstructing stone, the obstruction should first be relieved with either a ureteral double J stent or nephrostomy tube placement. The decision of which treatment modality is most appropriate should be made by urology.  In general, the more severely ill the patient, the greater the benefit from a nephrostomy tube. Definitive stone management can then occur once the infection is no longer active.  Morbidly obese patients and those who cannot be safely taken off of their blood thinners may require double J stent, regardless. 

Electively, stones can be surgically managed in several ways. Extracorporeal shockwave lithotripsy (ESWL) can be used to break up stones anywhere in the urinary tract but is primarily used in the kidney and upper ureter. Ureteroscopy with laser lithotripsy can be used to manage stones endoscopically and is preferred for ureteral stones in the lower ureter. For large (greater than 2 cm) stones in the renal pelvis, percutaneous nephrolithotomy can be performed.

Once the patient has had his or her acute stone episode treated, it is recommended to evaluate the patient for the underlying cause for their stone episode, particularly if he or she has had stones in the past. This would involve obtaining a basic metabolic panel as well as a 24-hour urine collection for stone prevention analysis. Patients need to understand that this represents a commitment from them to follow a long-term course of therapy for stone prevention and that no treatment plan is foolproof so an occasional stone may still be produced but is much less likely on therapy than off. Physicians evaluating 24-hour kidney stone results should not only look at the normal ranges but also at what may be optimal. For example, in general, optimal 24-hour urinary calcium should be no more than 250 mg, oxalate less than 25 mg, citrate more than 600 mg, urinary volume more than 2,000 cc and urinary uric acid at 600 mg or less. While these levels may not be realistically obtainable in every patient, they are used as goals for treatment where the intention is to get as many chemistry levels optimal as possible even if they are all technically normal.[22][23][24]

Analysis of 24-hour urine tests can be complicated.  A companion piece "24 Hour Urine Testing for Nephrolithiasis: Guide to Interpretation" by Leslie S and Bashir K is recommended for more details on 24-hour urine interpretation and preventive therapy.

Admission is recommended in the following cases:

  • Inadequate pain relief with oral analgesics
  • Patient with a transplanted kidney and renal calculi
  • Presence of renal calculi and pyelonephritis

Dissolution therapy

Dissolution therapy does not work for calcium stones but it may be used to manage uric acid and cystine stones. Uric acids can be dissolved by making the urine alkaline with sodium bicarbonate. In addition, allopurinol can be used to reduce uric acid excretion. Thiazide diuretics are recommended for patients with recurrent stones. Cystine stones can be managed with D-penicillamine, aggressive fluid intake and alkalinization.

Differential Diagnosis

  • Appendicitis
  • Cholecystitis
  • Acute epididymitis
  • Diverticulitis
  • Hernia
  • PID

Staging

European Guidelines in patients with Renal calculi

  1. Check urine for hematuria, pH, bacteria and obtain a culture
  2. Order BUN and serum creatinine
  3. Order serum calcium, uric acid, sodium and potassium levels
  4. Complete CBC
  5. CRP
  6. Coagulation profile in case intervention is necessary
  7. Obtain non-contrast CT scan

Prognosis

Close to 80-90% of renal calculi pass spontaneously. About 3% of patients need admission because of the pain, inability to pass the stone or hydration. A few patients may develop urinary tract obstruction and an upper urinary tract infection. This can result in urosepsis or pyelonephritis. Most of these patients require a procedure to remove the stone. The recurrence of renal calculi has been reported to be about 50% within 5 years. Individuals with ongoing malignancy or metabolic problems are at a higher risk for recurrence. The key for all patients with renal calculi is to stay hydrated; without hydration no medical therapy is successful.

Complications

  • Abscess
  • Urosepsis
  • Ureteral scarring/perforation
  • Urine extravasation
  • Kidney atrophy in chronic cases

Deterrence and Patient Education

Patients should avoid diets high in calcium, limit salt and protein intake

Pearls and Other Issues

Ultimately, the success of any kidney stone preventive treatment program will depend on the patient's willingness to follow a long-term course of treatment that will involve some level of dietary modifications, medications, sacrifice and change with no obvious immediate or noticeable benefits. Patients on treatment may still make stones, albeit fewer than otherwise. Patients may cheat on their therapies from time to time, and since they do not seem to pay any immediate price or penalty, many will revert to their previous diets and behaviors. Patients may also develop an over-reliance on drug therapy so they can minimize the dietary changes requested.  

Enhancing Healthcare Team Outcomes

Most patients with kidney stones, even those with multiple recurrences, are unaware of the availability of 24-hour urine testing and the potential benefits of preventive measures based on this testing. Successful kidney stone preventive programs require high levels of patient compliance, motivation, and discipline for their efficacy. an interprofessional team of nurses, nurse practitioners, physician assistants, and physicians should educate patients about preventive therapy, but only those who are strongly motivated are likely to have long-term success.[24] The health care team involved in the care of nephrolithiasis patients has an absolute obligation to inform patients of the existence of such programs, particularly in cases of multiple stone recurrences, solitary kidneys, high surgical risk factors or those in the pediatric age group. [25][26]

Clinicians looking after patients with renal calculi should educate them about the importance of hydration; failing to do so will mean low effectiveness of medical therapy. Patients with recurrent renal calculi should be referred to a specialist for work up to rule of an anatomical or metabolic problem. Only through open communication between the team members can the morbidity of renal calculi be lowered.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Renal Calculi - Questions

Take a quiz of the questions on this article.

Take Quiz
A 65-year-old male presents to a clinic with complaints of bilateral lumbar pain radiating to the groin region, dysuria, burning micturition, and increased urinary frequency. He also reports a recent episode of hematuria. Blood workup revealed serum calcium levels of 9.5 mg/dL, serum uric acid level of 6.0 mg/dL, and serum creatinine level of 1.0 mg/dL. Urinalysis showed a urinary pH of 8.0 and coffin lid crystals on the microscope. Urine dipstick test is also positive for blood in urine, leukocytes, and nitrates. What is the most likely etiology?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old female presents to a clinic with complaints of left lumbar pain radiating to the left groin, dysuria, and increased urinary frequency. She denies any history of blood in the urine. Blood workup revealed serum calcium levels of 8.9 mg/dL, serum uric acid level of 6.0 mg/dL, and serum creatinine level of 1.1 mg/dL. Flat plate abdominal x-ray did not show any evidence of nephrolithiasis. On ultrasound-KUB (kidneys, ureters, and bladder), there is an echogenic area in the left kidney with shadowing. A 24-hour urinary test showed a uric acid level of more than 750 mg. Urinalysis revealed a urinary pH of 5.0. Which of the following is the most appropriate prophylactic treatment in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old female with a past medical history of nephrolithiasis presents to a clinic for a routine medical checkup. Flat plate abdominal x-ray did not show any evidence of nephrolithiasis. Blood workup revealed serum calcium levels of 9.2 mg/dL, serum uric acid level of 6.8 mg/dL, and serum creatinine level of 1.1 mg/dL. A 24-hour urinary test analysis report showed a uric acid level of 800 mg. The clinician advised her to maintain a low purine diet. Which of the following diets should the clinician recommend her?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which symptom is indicative of renal stones?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old female presents to a clinic for a routine medical check-up. One month ago, she presented in the emergency department with complaints of acute breathlessness for four hours. On general physical examination, she had a fever of 100.5 F, pulse rate of 126/minute, respiratory rate of 30/minute, and oxygen saturation of 84% at room air. There was also generalized pallor, moderate icterus, and cyanosis. Blood workup revealed hemoglobin of 8.8 gm/dl, total leukocyte count of 8,000 cells/microliter with a normal differential count, and a reticulocyte count of 5%. On abdominal examination, the liver was palpable. Ultrasonograph confirmed mild hepatomegaly. She reported that the symptoms started after she ate fava beans. Past medical history also revealed that her pediatrician had told her not to use non-steroidal anti-inflammatory drugs (NSAIDS). Which type of kidney stones are associated with the medical condition she has?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old male patient with a past medical history of diabetes and hypertension presents to a clinic for a routine medical checkup. He also reports a recent onset of dysuria, urgency, and increased urinary frequency. Detailed medical history reveals a long history of bone pains for which he takes nonsteroidal anti-inflammatory drugs (NSAIDs), infrequently. The general physical examination is unremarkable. Serum electrolyte studies revealed a sodium level of 135 mEq/L, potassium 3.8 mEq/L, and chloride 101 mEq/L. Blood workup revealed serum calcium levels of 9.5 mg/dL, serum uric acid level of 5.8 mg/dL, and serum creatinine level of 1.1 mg/dL. Urinalysis shows a pH of 7.0, no evidence of microscopic hematuria. However, the urine dipstick test is positive for leukocytes and nitrates. The patient is at increased risk for which of the following type of urinary calculi formation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old male presents with the intermittent complaint of "burning" when he urinates. Urinalysis shows trace blood on his urine dip test and positive for leukocytes and nitrates. A 24-hour urinary calcium level was noted to be slightly more than 250 mg/L. Lab reports revealed a serum calcium level of 10.5 mg/dL. A flat plate abdominal x-ray and ultrasound-KUB did not show any evidence of renal or bladder stones. What is an ideal way to prevent renal calculi in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Renal Calculi - References

References

Reesink DJ,Scheltema JMW,Barendrecht MM,Boeken Kruger AE,Jansonius A,Wiltink J,van der Windt F, Extracorporeal shock wave lithotripsy under intravenous sedation for treatment of urolithiasis. Scandinavian journal of urology. 2018 Nov 18     [PubMed]
York NE,Zheng M,Elmansy HM,Rivera ME,Krambeck AE,Lingeman JE, Stone free outcomes of flexible ureteroscopy for renal calculi utilizing CT imaging. Urology. 2018 Nov 1     [PubMed]
Suliman A,Burki T,Garriboli M,Glass J,Taghizadeh A, Flexible ureterorenoscopy to treat upper urinary tract stones in children. Urolithiasis. 2018 Oct 28     [PubMed]
Bowen DK,Tasian GE, Pediatric Stone Disease. The Urologic clinics of North America. 2018 Nov     [PubMed]
Aune D,Mahamat-Saleh Y,Norat T,Riboli E, Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies. European journal of epidemiology. 2018 Nov     [PubMed]
Jobs K,Rakowska M,Paturej A, Urolithiasis in the pediatric population - current opinion on epidemiology, patophysiology, diagnostic evaluation and treatment. Developmental period medicine. 2018     [PubMed]
Bauza JL,Pieras EC,Grases F,Tubau V,Guimerà J,Sabaté XA,Pizà P, Urinary tract infection's etiopathogenic role in nephrolithiasis formation. Medical hypotheses. 2018 Sep     [PubMed]
Sandhu MS,Gulati A,Saritha J,Nayak B, Urolithiasis: Comparison of diagnostic performance of digital tomosynthesis and ultrasound. Which one to choose and when? European journal of radiology. 2018 Aug     [PubMed]
Yildirim K,Olcucu MT,Colak ME, Trends in the treatment of urinary stone disease in Turkey. PeerJ. 2018     [PubMed]
Fedrigon DC,Jain R,Sivalingam S, Current use of medical expulsive therapy among endourologists. Canadian Urological Association journal = Journal de l'Association des urologues du Canada. 2018 May 14     [PubMed]
Diri A,Diri B, Management of staghorn renal stones. Renal failure. 2018 Nov     [PubMed]
Reynolds LF,Kroczak T,Pace KT, Indications and contraindications for shock wave lithotripsy and how to improve outcomes. Asian journal of urology. 2018 Oct     [PubMed]
Li X,Zhu W,Lam W,Yue Y,Duan H,Zeng G, Outcomes of long-term follow-up of asymptomatic renal stones and prediction of stone-related events. BJU international. 2018 Sep 25     [PubMed]
Batura D,Hashemzehi T,Gayed W, Should contrast CT urography replace non-contrast CT as an investigation for ureteric colic in the emergency department in those aged 65 and over? Emergency radiology. 2018 Dec;     [PubMed]
Rodger F,Roditi G,Aboumarzouk OM, Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract Stones: A Systematic Review. Urologia internationalis. 2018;     [PubMed]
Kennish SJ,Wah TM,Irving HC, Unenhanced CT for the evaluation of acute ureteric colic: the essential pictorial guide. Postgraduate medical journal. 2010 Jul;     [PubMed]
Dalla Palma L,Pozzi-Mucelli R,Stacul F, Present-day imaging of patients with renal colic. European radiology. 2001;     [PubMed]
Pfister SA,Deckart A,Laschke S,Dellas S,Otto U,Buitrago C,Roth J,Wiesner W,Bongartz G,Gasser TC, Unenhanced helical computed tomography vs intravenous urography in patients with acute flank pain: accuracy and economic impact in a randomized prospective trial. European radiology. 2003 Nov;     [PubMed]
Brisbane W,Bailey MR,Sorensen MD, An overview of kidney stone imaging techniques. Nature reviews. Urology. 2016 Nov;     [PubMed]
Assimos D,Krambeck A,Miller NL,Monga M,Murad MH,Nelson CP,Pace KT,Pais VM Jr,Pearle MS,Preminger GM,Razvi H,Shah O,Matlaga BR, Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I. The Journal of urology. 2016 Oct;     [PubMed]
Assimos D,Krambeck A,Miller NL,Monga M,Murad MH,Nelson CP,Pace KT,Pais VM Jr,Pearle MS,Preminger GM,Razvi H,Shah O,Matlaga BR, Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART II. The Journal of urology. 2016 Oct;     [PubMed]
Morgan MS,Pearle MS, Medical management of renal stones. BMJ (Clinical research ed.). 2016 Mar 14;     [PubMed]
Erbay G,Yalcın A,Gultekin MH, Predictor Role of Pretreatment Resistive and Pulsatile Indexes in the Success of Medical Expulsive Therapy of Ureteral Stones. Urology. 2018 Aug;     [PubMed]
Wiener SV,Ho SP,Stoller ML, Beginnings of nephrolithiasis: insights into the past, present and future of Randall's plaque formation research. Current opinion in nephrology and hypertension. 2018 Jul;     [PubMed]
Cohen AJ,Borofsky MS,Anderson BB,Dauw CA,Gillen DL,Gerber GS,Worcester EM,Coe FL,Lingeman JE, Endoscopic Evidence That Randall's Plaque is Associated with Surface Erosion of the Renal Papilla. Journal of endourology. 2017 Jan;     [PubMed]
Rojas-Moreno C, Pyonephrosis and pyocystis. IDCases. 2016;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Pathology-Chemistry. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Pathology-Chemistry, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Pathology-Chemistry, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Pathology-Chemistry. When it is time for the Pathology-Chemistry board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Pathology-Chemistry.