Physiology, Pulmonary, Ventilation and Perfusion


Article Author:
Kyle Powers


Article Editor:
Amit Dhamoon


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
4/6/2019 10:58:34 PM

Introduction

One of the major roles of the lungs is to facilitate gas exchange from the circulatory system and the external environment. The lungs are composed of branching airways that terminate in respiratory bronchioles and alveoli, which participate in gas exchange. Most bronchioles and large airways are part of the conducting zone of the lung, which delivers gas to sites of gas exchange, in alveoli. Gas exchange occurs in the lungs between alveolar air and blood of the pulmonary capillaries. For effective gas exchange to occur, alveoli must be ventilated and perfused. Ventilation (V) refers to the flow of air into and out of the alveoli, while perfusion (Q) refers to the flow of blood to alveolar capillaries. Individual alveoli have variable degrees of ventilation and perfusion in different regions of the heart. Collective changes in ventilation and perfusion in the lungs are measured clinically using the ratio of ventilation to perfusion (V/Q). Changes in the V/Q ratio can affect gas exchange and can contribute to hypoxemia.

Cellular

Gas exchange occurs in the respiratory zone of the lung, where alveoli are present. The respiratory zone of the lung includes respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli. Thin alveolar septa separate adjacent alveoli. Adjacent alveoli have connections via small openings, called pores of Kohn, that allow for collateral airflow and equalization of pressure between alveoli. The control of opening or closing of alveoli to regulate ventilation occurs at common alveolar openings by smooth muscle projections called alveolar cusps.

The alveolar septum has numerous capillaries and thin walls for gas exchange. In addition to capillary endothelial cells, the alveolar septum contains Type I pneumocytes that are very thin and line the alveoli, as well as Type II pneumocytes that secrete dipalmitoylphosphatidylcholine (DPPT) surfactant to decrease alveolar surface tension. Alveolar macrophages, also known as dust cells, are active in defending against pathogens and irritants.

Gas exchange in the alveoli occurs primarily by diffusion. Traveling from the alveoli to capillary blood, gases must pass through alveolar surfactant, alveolar epithelium, basement membrane, and capillary endothelium. According to Fick’s law of diffusion, diffusion of a gas across the alveolar membrane increases with:

  • Increased surface area of the membrane
  • Increased alveolar pressure difference (P-P)
  • Increased solubility of the gas
  • Decreased membrane thickness

Both oxygen and carbon dioxide exchange is perfusion-limited. Diffusion of gases reaches equilibrium one-third of the way through the capillary/alveolar interface. Deoxygenated blood from the pulmonary arteries has a PVO2of 40 mmHg, and alveolar air has a PAO2 of 100 mmHg, resulting in a movement of oxygen into capillaries until arterial blood equilibrates at 100 mmHg (PaO2). Meanwhile, carbon dioxide partial pressure decreases from a PVCO2 of 46 mmHg to a PaCO2 of 40 mmHg in alveolar capillaries due to a PACO2 of 40 mmHg.

Organ Systems Involved

  • Cardiovascular system
    • Pulmonary circulation
    • Alveolar capillaries
  • Respiratory System
    • Alveoli
    • Alveolar sacs
    • Alveolar ducts
    • Respiratory bronchioles

Mechanism

The V/Q ratio evaluates the matching of ventilation (V) to perfusion (Q). There is regional variation in the V/Q ratio within the lung. Ventilation is 50% greater at the base of the lung than at the apex. The weight of fluid in the pleural cavity increases the intrapleural pressure at the base to a less negative value. As a result, alveoli are less expanded and have higher compliance at the base, resulting in a more substantial increase in volume on inspiration for increased ventilation. Perfusion is also greater at the base of the lung due to gravity pulling blood down towards the base. Overall, perfusion increases more than ventilation at the base of the lung, resulting in lower V/Q ratios in the base of the lung compared to the apex. In a healthy individual, the V/Q ratio is 1 at the middle of the lung, with a minimal spread of V/Q ratios from 0.3 to 2.1 from base to apex.[1] In cases of high V/Q ratios, PO2 increases and PCO2 decreases as alveolar air more closely matches the larger volume of inspired air than perfused blood.[2] On the other hand, low V/Q ratios result in a decreased PO2 and an increased PCO2.

Related Testing

Clinically, the diffusion capacity of the lung (DLCO) is measured using low concentrations of carbon monoxide. DLCO can be calculated by the equation VCO = DLCO (PACO – PaCO). PaCO is approximately zero due to hemoglobin binding so that the equation can rearrange to DLCO = VCO / PACO. To measure DLCO, low CO content air is breathed for 10 seconds, with the flow of CO into and out of the lungs being measured to calculate VCO.[3] Measurement of PACO allows for the calculation of DLCO, with a normal value of DLCO being 25 mL/min/mmHg.

DLCO is related to the diffusion coefficient (D) of carbon monoxide, the alveolar area (A), and the alveolar thickness (T) according to the equation DLCO = D x A / T. Because D is a constant, the value of DLCO provides insight into the alveolar area and thickness that impacts gas exchange. Also, the diffusion of other gases can be calculated at different pressure conditions by correcting for their different diffusion coefficients.

The V/Q ratio of the lung is measurable by the multiple inert gas elimination technique (MIGET). The lung divides into a number of compartments, and a mixture of 6 gases is inhaled.[4] The V/Q of each compartment can be calculated using the expiration of the different gases and mathematical models.

Pathophysiology

Systemic circulation to the lungs takes place via the bronchial circulation, which ultimately drains into the pulmonary vein. This normal left-to-left anatomic shunt results in a slight drop in PaO2 from 100 mmHg at the end of pulmonary capillaries to 95 mmHg in the pulmonary vein. The A-a gradient typically measures this slight drop in oxygen partial pressure from the alveoli (PAO2) to the pulmonary vein (PaO2) due to shunting, which may increase in some pathological conditions. Right to left shunts may further reduce PaO2 to cause hypoxemia and exhibit an increased A-a gradient. Diffusion problems may also lead to an increased A-a gradient because arterial blood may not reach equilibrium with alveolar air due to diffusion limited gas exchange.

Physiological conditions can cause extreme V/Q ratios outside of the normal range. In a right-to-left shunt, a portion of the pulmonary blood flow is shunted away from alveoli, resulting in perfusion without ventilation and a lower V/Q ratio. Although diffusion between capillaries and alveoli is unaffected, the arterial PO2 is decreased from the lack of ventilation of the shunted blood, resulting in an increased A-a gradient. The arterial PCO2 is increased from a lack of gas exchange as well. Because of the plateau in the hemoglobin oxygen-binding curve, a small change in oxygen content of the arterial blood causes a significant shift in PO2. As a result, right-to-left shunts result in more hypoxemia than hypercapnia. Generally, increasing FiO2 through supplemental oxygen therapy does not improve hypoxemia in patients with right-to-left shunts because the increased oxygen content of the inspired air never reaches the shunted blood for gas exchange.

Alveolar dead space occurs when some alveoli are not perfused, resulting in a high V/Q ratio. Alveolar dead space increases the total physiological dead space, decreasing alveolar ventilation; this results in a decreased V/Q ratio and decreases PAO2 for functional alveoli. Hypoxemia results from the reduced PAO2, which may be corrected by oxygen therapy to increase the PAO2 of functioning alveoli.

Clinical Significance

A number of conditions can cause right-to-left shunts that cause a V/Q mismatch. At a microscopic level, pulmonary arteriovenous malformations provide a route from arterial to venous blood in the pulmonary circulation that bypasses the pulmonary capillaries where gas exchange occurs. Congenital heart defects can cause right-to-left shunts at a macroscopic level. In the case of ventricular septal defects, the right ventricle may hypertrophy to the point that the right ventricle has a higher pressure during systole than the left ventricle, causing blood to flow from the right to left ventricle, bypassing the pulmonary circulation. Physiologic right-to-left shunts may also occur if perfusion reaches areas of the lungs that are not ventilated, which may result from airway obstructions, pulmonary edema, and pneumonia. The effect of physiologic right-to-left shunts is minimized by hypoxic vasoconstriction in the pulmonary circulation, which redirects blood flow to better-ventilated areas of the lungs for more efficient exchange.

Asthma is often referred to as a “false shunt” because bronchoconstriction decreases ventilation, resulting in a low V/Q ratio, as occurs in right-to-left shunts. In the case of asthma, oxygen therapy is indicated because some ventilation of the “shunted” blood still occurs, and oxygen therapy increases the PAO2 of alveoli with obstructed airflow. Treatment with a bronchodilator such as a beta-2 agonist is more beneficial to patients with asthma than oxygen therapy because of its reduction of bronchoconstriction.

V/Q mismatches can occur in the case of pulmonary embolism (PE). Emboli may restrict blood flow in the pulmonary circulation, resulting in alveoli that are ventilated but not perfused; this results in an increased V/Q ratio and decreased gas exchange. The impaired gas exchange may cause hypoxemia in cases of PE.[5]

Inspiratory hypoxia, as occurs at high altitude, can cause a V/Q mismatch and affect blood gases. The decreased atmospheric pressure at altitude causes a decreased PAO2. Although normal diffusion occurs (normal A-a gradient), the arterial PaO2 decreases and hypoxemia results. Oxygen therapy can correct the hypoxemia in this instance because the inspired air increases the PAO2 back to normal levels.

Intrinsic diffusion barriers between alveoli and capillaries can result in hypoxemia. Although PAO2 is normal, impaired diffusion results in a decreased PaO2 and increased A-a gradient. Patients with diffusion problems have more hypoxemia than hypercapnia, and oxygen therapy improves hypoxemia in diffusion deficits. Supplemental oxygen increases PAO2, resulting in an increased oxygen gradient contributing to diffusion. Even with oxygen therapy, there is still an increased A-a gradient.

A variety of conditions can affect diffusion, which can be clinically assessed using DLCO. In lung fibrosis, thickening of lung tissue increases the alveolar wall thickness, decreasing DLCO.[3] DLCO is also decreased in emphysema, in this case, due to the destruction of alveoli decreasing the area for gas exchange.[3] The decreased diffusion in emphysema sometimes causes diffusion limited oxygen exchange during exercise, as increased heart rate reduces the time blood spends in alveolar capillaries for gas exchange.

A significant cause of diffusion problems is pulmonary edema, as fluid in the lungs increases the effective thickness of the alveolar wall and decreases the area of gas exchange. Pulmonary edema results in greater hypoxemia than hypercapnia because carbon dioxide can more easily dissolve into the fluid to reach the alveolar membrane for exchange. The edema prevents air from reaching pulmonary capillaries, resulting in perfusion without ventilation and a physiologic right-to-left shunt.

Pulmonary edema has several causes, most of which affect Starling forces to increase filtration at alveolar capillaries. Left-sided heart failure may increase left atrial pressure, which in turn can result in increased capillary hydrostatic pressure to cause pulmonary edema. Over-administration of IV fluids may similarly increase capillary hydrostatic pressure to cause edema. Acute respiratory distress syndrome (ARDS) and sepsis can cause increased capillary permeability to cause pulmonary edema. Decreases in capillary osmotic pressure can also cause pulmonary edema, as occurs in nephrotic syndrome and liver failure. Pulmonary edema may also result from obstructed lymphatic drainage of filtered fluid, as may occur with tumors.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Pulmonary, Ventilation and Perfusion - Questions

Take a quiz of the questions on this article.

Take Quiz
Minute ventilation is the product of respiratory rate and which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presenting with shortness of breath has the following values on examination: PAO2: 100 mmHg, PaO2: 78 mmHg, PVO2: 40 mmHg, DLCO: normal, The patient’s condition does not improve with oxygen therapy. What is the most likely cause of the patient’s hypoxemia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presenting with shortness of breath has the following values on examination: PAO2: 100 mmHg PaO2: 68 mmHg PVO2: 40 mmHg DLCO: Decreased The patient’s condition improves with oxygen therapy. What is the most likely cause of the patient’s hypoxemia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 67 year old woman with a 45 year history of smoking visits her primary care with a persistent cough and shortness of breath on exertion. She has lost 15 pounds since her last visit 2 months ago. She is diagnosed with lung cancer in the right apical segment of her lung. Which values of alveolar partial pressures would be expected in this area of the lung?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 70-year old former coal miner presents with hypoxemia (PaO2=75 mmHg). Laboratory tests would likely find which combination of values for PAO2 and diffusing capacity of the lungs for carbon monoxide (DLCO)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Pulmonary, Ventilation and Perfusion - References

References

Wagner PD,Laravuso RB,Uhl RR,West JB, Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100 per cent O2. The Journal of clinical investigation. 1974 Jul;     [PubMed]
Petersson J,Glenny RW, Gas exchange and ventilation-perfusion relationships in the lung. The European respiratory journal. 2014 Oct;     [PubMed]
Enright Md P, Office-based DLCO tests help pulmonologists to make important clinical decisions. Respiratory investigation. 2016 Sep;     [PubMed]
Wagner PD, The multiple inert gas elimination technique (MIGET). Intensive care medicine. 2008 Jun;     [PubMed]
Huet Y,Lemaire F,Brun-Buisson C,Knaus WA,Teisseire B,Payen D,Mathieu D, Hypoxemia in acute pulmonary embolism. Chest. 1985 Dec;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.