High Flow Nasal Cannula

Article Author:
Sandeep Sharma

Article Editor:
Rebanta Chakraborty

Editors In Chief:
Kranthi Sitammagari
Mayank Singhal

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes

9/19/2019 8:38:50 AM


Supplemental oxygen therapy is one of the more commonly prescribed interventions used by physicians when caring for hypoxic patients acutely. This supplementation often takes the form of the low-flow nasal cannula (LFNC). However, there are limitations to this supplemental oxygen intervention. A traditional nasal cannula can only effectively provide only up to 4 to 6 liters per minute of supplemental oxygen. This equates to a FiO2 of approximately 0.37 to 0.45. Above this number, nasal mucosal irritation occurs with drying of the passages, and there is, therefore, an increased potential for bleeding with prolonged use.  In low-flow nasal cannula therapy, FiO2 delivery is directly tied to flow rate. For increased FiO2, the rate must be increased. The low-flow nasal cannula is an open system of supplementation with high levels of leaking air around the oxygen source. As such, the efficacy of treatment for the low-flow nasal cannula is limited. High-flow nasal cannula (HFNC) therapy is an oxygen supply system capable of delivering up to 100% humidified and heated oxygen at a flow rate of up to 60 liters per minute. All settings are controlled independently allowing for greater confidence in the delivery of supplemental oxygen as well as better outcomes when used. In addition to greater control over the delivery of FiO2, there are several benefits to using a high-flow nasal cannula. The physiological mechanism of action and uses for high-flow nasal cannula are explored here.[1][2]


Basic components include a flow generator providing gas flow rates up to 60 liters per minute, an air-oxygen blender that achieves escalation of FIO2 from 21% to 100% irrespective of flow rates, and a humidifier that saturates the gas mixture at  temperature of 31 to 37 C. To minimize condensation, the heated humidified gas is delivered via heated tubings through a wide bore nasal prong.

Currently, there are 5 mechanisms that are believed to be responsible for the efficacy of high-flow nasal cannula. These include:

  • Physiological dead space washout of waste gasses including carbon dioxide (CO2)
  • Reduction of nasopharyngeal resistance to inspiration
  • Positive end expiratory pressure
  • Increased alveolar recruitment
  • Greatly increased humidification of airways leading to improved tolerance of the intervention

Physiological dead space accounts for approximately one-third of the tidal volume of breathing. This allows for the accumulation of CO2 and a decrease in available oxygen (O2) for diffusion when ventilation is not effective in cycling inspired air with retained air within dead spaces. The high flow rates involved in high-flow nasal cannula delivers volumes of air over what a patient ventilates physiologically, which increases ventilation and allows for displacement of excess CO2 with excess O2. This allows for an increased PAO2 creating a greater oxygen diffusion gradient and potentially improving patient oxygenation.

High-flow nasal cannula accomplishes a reduction of nasopharyngeal airway resistance leading to improved ventilation and oxygenation through the application of a positive pressure environment.  The resistance of an airway follows the Hagen–Poiseuille law and is calculated as:

  • R = 8nl / 3.14 r4

Where l equals the length of the airway, n equals the dynamic viscosity of air, and r equals the radius of the airway. Physiologically, the nasopharynx is a dynamic environment that allows for expansion and constriction of the airway radius. By creating a positive pressure environment, high-flow nasal cannula presses from the interior of the nasopharynx outwards. This dilates the radius of the nasopharyngeal airways and dramatically reduces the resistance to airway flow, thus increasing ventilation and oxygenation potential.

In addition to providing positive pressure support to the nasopharynx, high-flow nasal cannula creates a positive end expiratory pressure to the lower airways. This effect acts similarly to continuous positive airway pressure support in that it applies a splinting force to keep alveolar airways from collapsing under increased surface tensile stresses during exhalation. Additionally, this allows for improved alveolar recruitment, increasing the effective available surface area within the lungs for gaseous diffusion both to and from the blood. It is important to note, however, that patients must have their mouth closed to gain the maximum benefit of PEEP from high flow nasal cannula therapy. Approximate magnitude of PEEP generated with a closed mouth is about 1 cm of water pressure for 10 liters flow.

Humidification and warming of inspired air are extremely important in creating an oxygenation system that is effective. Primarily, this is due to the human factor of comfort. Traditional low-flow nasal cannula blows cool, dry air directly into the nasal passages. This leads to drying of the mucosa and cracking of the tissue barriers, which is uncomfortable and leads to poor compliance to therapy. Many high-flow nasal cannula systems are designed with inline warming and humidification systems that provide appropriately humidified and body temperature air that is non-irritating to the mucosa increasing patient comfort (31 to 37  C). Increased comfort leads to improved compliance and therefore better outcomes of therapy.[3][4]

Issues of Concern

Like many other medical interventions, there are limitations and drawbacks to the high-flow nasal cannula. Some include a greater expense for care relative to low flow nasal cannula, increased complexity and training to initiate care, decreased mobility, a risk for ineffective sealing of the passageways leading to leaking of air and loss of the positive airway pressure effect, a potential to delay intubation, and the potential to inappropriately delay of end-of-life decisions (Spoletini et al. 2015). Furthermore, potential risk factors to noninvasive ventilation apply to a limited extent in the use of high-flow nasal cannula as well. That includes patients with alteration of consciousness, facial injury, excessive secretion with the risk of aspiration, and hemodynamic instability.[1][5]

Clinical Significance

There are many applications for high-flow nasal cannula including acute hypoxemic respiratory failure, oxygenation during pre-intubation, and post-extubation.

Acute hypoxemic respiratory failure (AHRF) occurs due to intrapulmonary shunting of blood because of airspace collapse or filling and is usually refractory to supplemental oxygen. This occurs when there is increased alveolar-capillary hydrostatic pressure, increased alveolar-capillary permeability, blood due to hemorrhage, and/or fluid because of an inflammatory condition such as pneumonia. As previously discussed, high-flow nasal cannula therapy provides PEEP. One study (Frat, Jean-Pierre, et al. 2015) found that although high-flow nasal cannula did not reduce the rate of intubation among patients with AHRF, patients who received high-flow nasal cannula therapy experienced reduced mortality, both in the intensive care unit (ICU) and at 90-days. The results also depicted an increased degree of comfort, reduced dyspnea severity, and a decreased respiratory rate.

The study was underpowered for the primary outcome of intubation rate and was not replicated by subsequent 2 randomized controlled trials, although both showed (Stephen et al. and Maggiore et al.) high-flow nasal cannula to be equally efficient as non-invasive ventilation (NIV) in avoiding intubation and reducing mortality.

Physiologically, the ability to independently control FIO2 and oxygen flow in NIV and high-flow nasal cannula renders a clear advantage over regular oxygen therapy in patients with acute hypoxic respiratory failure, prone to hypercapnia. High-flow nasal cannula certainly provides a more comfortable alternative in patients who struggle with tolerating an NIV modality. Finally, the adverse effect on the logistics of patient location on NIV, nursing, and respiratory therapy workload needs to be accounted.

Pre-oxygenating a patient before intubation is essential. High-flow nasal cannula therapy can provide this in an alert awake patient by achieving a high-flow rate and very high amounts of FiO2, thus increasing the amount of PO2. This gives more time for the process of intubation before desaturation happens. Historically, a non-rebreather mask (NRM) has been used to do this. However, Miguel-Mantanes et al. (2015) found that high-flow nasal cannula therapy significantly improves oxygenation during intubation as compared to a nonrebreather mask (NRM). While one retrospective analysis found that NIV such as BiPAP yields similar results to HFNC in relation to outcomes, patient compliance decreases significantly (Besnier, Emmanuel et al. 2016). This suggests that high-flow nasal cannula oxygen therapy is superior to both NRM and NIV in the pre-intubation period.

Oxygenation is also important post-extubation. Arman et al. (2017) found that while there was no significant difference in post-extubation oxygen saturation between low-flow nasal cannula and high-flow nasal cannul oxygen therapy in the ICU, there was a difference in heart rate, and respiratory rate, suggesting that low-flow nasal cannula required an increased quantity of both of these in order to achieve the same oxygen saturation. Post-extubation after surgery also necessitates oxygen therapy. Youfeng et al. (2018) completed a meta-analysis which concluded that high-flow nasal cannula could reduce the need for respiratory support compared with low-flow nasal cannula in cardiac surgical patients.

Immunocompromised patients suffer from increased mortality when endotracheal intubation must occur. This is largely due to the increased risk of infection in these patients. A review and meta-analysis by Hui-BinHuang et al. (2018) explored high-flow nasal cannula therapy in immunocompromised patients with acute respiratory failure. The results suggest that compared to both low-flow nasal cannula is limited and NIV, high-flow nasal cannula therapy might significantly reduce both mortality and intubation rate in the immunocompromised.

The emergency department is the first stop for most patients who are admitted to the hospital. Acute dyspnea and hypoxemia are 2 of the most common reasons for emergency department visits. Nuttapol et al. (2015) completed a prospective randomized comparative study to ascertain whether high-flow nasal cannula therapy is superior to conventional oxygen therapy in the emergency department. They found that high-flow nasal cannula therapy improves dyspnea and comfort in subjects presenting to the emergency department for dyspnea and/or hypoxemia.

According to the National Center for Health Statistics, 51,811 people died from pneumonia, and 544,000 visited the emergency room (ER) for pneumonia as the primary discharge diagnosis in 2015. Pneumonia is also a common cause of ARHF which was previously discussed. Omote et al. (2018) found that high-flow nasal cannula therapy improved 30-day survival in patients with acute respiratory failure due to interstitial pneumonia as compared to NIV.

All patients with chronic obstructive pulmonary disease (COPD) will all eventually need supplemental oxygen, provided they do not first die from another cause. COPD exacerbations are also a common reason for hospital admission. Many patients with COPD benefit from NIV in the acute setting. However, a large limitation of NIV is the low level of patient compliance and comfort. High-flow nasal cannula therapy provides the benefit of PEEP and increased oxygen saturation that NIV supplies but increases the patient comfort and compliance. In addition, Dzira et al. (2017) discovered that in GOLD stage III and IV COPD patients, high-flow nasal cannula at flow rates greater than 30 L per minute decreased the respiratory rate, inspiratory time to total breath time ratio, and diaphragmatic work of breathing compared to NIV.[6][2][7][8][9][10]

Enhancing Healthcare Team Outcomes

High-flow nasal cannula therapy is relatively newer treatment, and not everyone is familiar with the equipment. Educational sessions should be held for the nurses, respiratory therapist and other physicians before the treatment is introduced in the hospital.

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

High Flow Nasal Cannula - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is a contraindication for a high flow nasal cannula?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 41-year-old male comes in with acute on chronic shortness of breath (SOB). He is a smoker and smoked three packs per day since the age of 15. On physical examination, he is extremely SOB, using accessory muscles, and is tachycardic. Basic lab workup shows pancytopenia, and chest x-ray shows bilateral ground glass pulmonary infiltrates. Arterial blood gas shows pH 7.45, PCO2 35 mmHg, PO2 45 mmHg, and bicarbonate 24 mmol/L. As the patient is extremely dyspneic but alert and awake, it is decided to try noninvasive ventilation in the form of BiPAP, but the patient refuses to wear it as he is claustrophobic. What else could be offered to the patient before using invasive ventilation?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
How much flow and PEEP can be delivered by a high flow nasal cannula system?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 61-year-old immunocompromised patient presents to the emergency department with hypoxic and hypercarbic respiratory failure. Initial ABG showed a pH of 7.1 with PCO2 of 70 and PO2 of 45. BiPAP was tried and failed. Chest x-ray showed bilateral pulmonary infiltrates. Initial blood pressure was 80/40 mmHg. The patient was intubated immediately put on 6 ml/kg ideal body weight tidal volume, 100% oxygen, started on antibiotics, Vasopressors, corticosteroids, nebulizer treatments, and ventilator care bundle. The patient was transferred to the medical intensive care unit. Bronchoscopy and central line were performed. The patient did well with current treatment and came of vasopressors. Sedation vacation was done with a weaning trial. After 40 minutes the patient's ABG is pH 7.39, PCO2 38, and PO2 68 on FiO2 of 65% and 8 cmH2O of positive end-expiratory pressure (PEEP). Which of the choices will be best serve the patient needs?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
What is a high flow nasal cannula?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

High Flow Nasal Cannula - References


Segovia B,Velasco D,Jaureguizar Oriol A,Díaz Lobato S, Combination Therapy in Patients with Acute Respiratory Failure: High-Flow Nasal Cannula and Non-Invasive Mechanical Ventilation. Archivos de bronconeumologia. 2018 Jul 12     [PubMed]
de Jong A,Calvet L,Lemiale V,Demoule A,Mokart D,Darmon M,Jaber S,Azoulay E, The challenge of avoiding intubation in immunocompromised patients with acute respiratory failure. Expert review of respiratory medicine. 2018 Aug 12     [PubMed]
Esquinas AM,Karim HMR,Soo Hoo GW, Insight to the growing utilizations of high flow nasal oxygen therapy over non-invasive ventilation in community teaching hospital: alternative or complementary? Hospital practice (1995). 2018 Aug 9     [PubMed]
Di Mussi R,Spadaro S,Stripoli T,Volta CA,Trerotoli P,Pierucci P,Staffieri F,Bruno F,Camporota L,Grasso S, High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Critical care (London, England). 2018 Aug 2     [PubMed]
Piastra M,Morena TC,Antonelli M,Conti G, Uncommon barotrauma while on high-flow nasal cannula. Intensive care medicine. 2018 Jun 30     [PubMed]
Beng Leong L,Wei Ming N,Wei Feng L, High flow nasal cannula oxygen versus noninvasive ventilation in adult acute respiratory failure: a systematic review of randomized-controlled trials. European journal of emergency medicine : official journal of the European Society for Emergency Medicine. 2018 Jun 19     [PubMed]
Mauri T,Galazzi A,Binda F,Masciopinto L,Corcione N,Carlesso E,Lazzeri M,Spinelli E,Tubiolo D,Volta CA,Adamini I,Pesenti A,Grasselli G, Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula. Critical care (London, England). 2018 May 9     [PubMed]
Lodeserto FJ,Lettich TM,Rezaie SR, High-flow Nasal Cannula: Mechanisms of Action and Adult and Pediatric Indications. Cureus. 2018 Nov 26;     [PubMed]
Clayton JA,McKee B,Slain KN,Rotta AT,Shein SL, Outcomes of Children With Bronchiolitis Treated With High-Flow Nasal Cannula or Noninvasive Positive Pressure Ventilation. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2019 Feb;     [PubMed]
Hill NS,Ruthazer R, Predicting Outcomes of High Flow Nasal Cannula for ARDS: An Index that ROX. American journal of respiratory and critical care medicine. 2019 Jan 29;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.