Malaria (Plasmodium Vivax)

Article Author:
Lacey Menkin-Smith

Article Editor:
Walter Winders

Editors In Chief:
Kranthi Sitammagari
Mayank Singhal

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes

5/4/2019 4:39:37 PM


Malaria is a significant global health problem with a substantial disease burden worldwide. In 2017 there were approximately 219 million cases of malaria responsible for about 435000 deaths, the majority on the African continent (WHO World Malaria Report 2018). Malaria results from infection with single-celled parasites belonging to the Plasmodium genus. Five species of Plasmodium are known to cause disease in humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Globally, Plasmodium falciparum and Plasmodium vivax account for the majority of cases of malaria. While Plasmodium falciparum is responsible for more deaths, Plasmodium vivax is the most widespread of all of the malaria species, can cause severe, even fatal infections and results in significant global morbidity and mortality.


Plasmodium vivax is a protozoal infection spread via the Anopheles mosquito.


Global Epidemiology 

P. vivax is the most widespread of the malaria species. More than one-third of the world’s population, nearly 2.5 billion people, is at risk of infection with P. vivax malaria.[1]  Due to its dormant liver phase, P. vivax can survive in colder climates than other species of malaria giving it a wider geographical range, including tropics, subtropics and temperate climates. The highest prevalence is in Latin America and Southeast Asia. According to 2018 WHO World Malaria Report, 74.1% of malaria cases in the Region of the Americas in 2017 resulted from P. vivax. While P. vivax endemicity overlaps significantly with that of P. falciparum in many parts of the world, there are several places in Southeast Asia such as South Korea where P. vivax is the exclusive cause of malaria infections.[1] A unique characteristic of the P. vivax parasite is that it requires the Duffy antigen on the surface of cells to invade red blood cells, which results in its prevalence being much lower than P. falciparum in Africa where the population has low expression of the Duffy antigen.[2] Classic teaching that the lack of Duffy antigen results in resistance to vivax malaria infection has been called into question by more recent studies have shown rare cases of P. vivax infection in Duffy-null Africans.[2][3] Acquisition of immunity to P. vivax occurs more rapidly than immunity to P. falciparum. Thus in endemic regions, morbidity tends to peak at an earlier age in P. vivax, and adults are more often asymptomatic when infected. Alternatively in low transmission settings risk of severe disease is not dependent on age.[4]

In the United States 

According to the CDC, approximately 1,700 cases of malaria are diagnosed in the United States each year. In a 2004 study by Newman et al. that reviewed 185 deaths between 1963 and 2001, 92.7 % were due to P. falciparum with only 3.3% attributed to P. vivax. The study found that failure to take chemoprophylaxis, taking inappropriate or incomplete prophylaxis, and missed diagnosis were common, leading to the finding that 85% of the malaria deaths were preventable.[5]


Malaria parasites are micro-organisms belonging to the genus Plasmodium. The primary host of the parasite is the Anopheles mosquito and vertebrates (primarily humans). Malaria parasites are transmitted from the mosquito to its human host in the form of sporozoites during a blood meal. These immediately migrate to the liver where they invade hepatocytes and form schizonts. When these schizonts rupture, Plasmodium merozoites are released into the blood. This blood stage coincides with malaria symptoms in the host. Plasmodium vivax and ovale have a dormant hypnozoite liver stage. Hypnozoites may remain dormant for months or even years, causing relapsing infection when they finally re-enter the bloodstream.[4] Merozoites of P. vivax only infect reticulocytes unlike other species of malaria which will infect all stages of the red blood cell. This exclusive preference for reticulocytes results in significantly lower parasitemia levels in patients infected with P. vivax as compared to P. falciparum. While parasitemia rarely exceeds 2-3%, P. vivax can still result in significant disease due to increased host immune response[6].  Parasites undergo sexual and asexual multiplication in the human host. The infection spreads when a mosquito takes a blood meal from an infected human continuing the life cycle of the malaria parasite and eventually inoculates its next human host.


On Giemsa-stained blood smears, P. vivax parasites may be present. Because P. vivax invades erythrocytes, infected RBCs will appear larger than uninfected cells. Trophozoite may appear as thick, large ameboid rings, about one half the diameter of the RBC and Schuffner’s dots are present. P. vivax schizonts contain 12 to 24 merozoites, almost fill the entire cell, and also contain Schuffner’s dots.

History and Physical

The typical incubation period for vivax malaria is 12 to 17 days, but relapse may occur up to 2 years later from dormant hypnozoites.[7] Classic clinical signs and symptoms of malaria include fever, headache, nausea, vomiting, body aches, anemia, and jaundice. Making a clinical diagnosis of malaria is sometimes challenging because of the nonspecific symptoms and overlap of signs and symptoms with other febrile illnesses. Due to the parasite life cycle, patients with P. vivax malaria tend to have paroxysmal fevers every approximately 42 to 56 hours.[8] Thus P. vivax is sometimes referred to as “tertian fever.” Anemia is the most common presenting symptom in adults and children living in P. vivax endemic areas. Unlike falciparum malaria, vivax malaria does not tend to cause sequestration; thus multi-system organ failure is less common. However, there are reports of cases of severe vivax malaria.[7][8][9][10] ARDS can occur secondary to host inflammatory immune response to parasitemia.[6][8]


In 2010 the World Health Organization adjusted their guidelines, creating an edict that all cases concerning malaria undergo testing before initiating treatment. Two main diagnostic modalities exist to test for malaria in the clinical setting: Light microscopy and rapid diagnostic tests (RDTs). Polymerase chain reaction (PCR) testing is also available, with more utility in the research setting, it can be used to confirm malaria species after establishing a diagnosis.

Blood Smear

Direct visualization of P. vivax parasites on Giemsa-stained blood smears by light microscopy is considered the diagnostic gold standard for the diagnosis of vivax malaria. Three sets of both thick and thin smears should be obtained. Thick smears are more sensitive and are used to detect parasitemia. Thin smears allow for more clear visualization of parasites which helps with speciation. Thin smears can also be used to calculate parasite density. Light microscopy has good sensitivity and is low cost. Limitations to microscopy include the necessity for trained and experienced laboratory technicians, access to a microscope and electricity.[11]

Compared to P. falciparum, the number of parasites circulating in the blood of a person infected with P. vivax malaria is typically lower, making it more challenging to diagnose. Also, the dormant liver hypnozoite form is undetectable by current diagnostic tools.

Rapid Diagnostic Test (RDT) 

Since the 1990s rapid diagnostic tests (RDTs) have become increasingly popular diagnostic tools, especially in the resource-limited setting.[11] RDTs detect one or more Plasmodium antigens in the blood. They offer the benefit of being fast, resulting in about 15 to 20 minutes and do not require a laboratory technician skilled at making and reading blood smears. RDTs are more sensitive at higher parasite loads and may be falsely negative at lower levels of parasitemia.[12]

Most RDTs test for the histidine-rich protein 2 (HRP2) found on Plasmodium falciparum. The sensitivity of these tests is as high as 93-99 percent.[13]

RDTs that can test for P. vivax may detect either the P. vivax-pLDH antigen specific to P. vivax or pan-pLDH or aldolase antigens common to all Plasmodium species.[14] Studies evaluating the utility of RDTs in detecting P. vivax have shown significantly lower sensitivities.[15][16][17]

In a 2014 Cochran Systematic Review of 47 studies enrolling 22,862 participants, looking at the use of rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries the authors found that RDTs that detect either pan-pLDH or aldolase had sensitivities for non-falciparum malaria that had a range in pooled analyses from 78% (Type 2) to 89%. They found better results for studies compared RDTs that detected a P. vivax specific antibody line to identify P. vivax.  Compared with microscopy, the RDTs had pooled sensitivity of 95% (95% CI 86% to 99%) and showed pooled specificity of 99% (95% CI 99% to 100%).[12]

 RDTs can remain positive one month after successful treatment of malaria.[18] In the United States standard practice is to confirm all RDTs with light microscopy.

Treatment / Management

Chloroquine remains the mainstay of treatment for uncomplicated vivax malaria. Exceptions to this include infection acquired in areas of chloroquine resistance, primarily Papua New Guinea and Indonesia[8]. According to the CDC appropriate treatment of chloroquine-sensitive uncomplicated vivax malaria includes Chloroquine phosphate or hydroxychloroquine plus primaquine. Dosing is listed below.

  1. Chloroquine phosphate: 600 mg base (=1,000 mg salt) orally immediately, followed by 300 mg base (=500 mg salt) orally at 6, 24, and 48 hours Total dose: 1,500 mg base (=2,500 mg salt) OR Hydroxychloroquine: 620 mg base (=800 mg salt) orally immediately, followed by 310 mg base (=400 mg salt) orally at 6, 24, and 48 hours
  2. Primaquine phosphate: 30 mg base orally once daily for 14 days

In regions where P. vivax is chloroquine resistant the CDC offers three possible treatment options: atovaquone-proguanil, quinine plus either tetracycline or doxycycline or mefloquine. Providers should select one of these three options to combine with primaquine.

Because of the dormant liver phase of P. vivax, primaquine must also be added to treatment regimens to treat the hypnozoite phase. Two scenarios in which primaquine is contraindicated include patient with G6PD deficiency and pregnant women. In patients with G6PD deficiency, primaquine may cause severe hemolytic anemia. Decisions for its use in this patient population must occur on a case-by-case basis.[19] In pregnant women, primaquine is contraindicated because of the risk for fetal hemolysis.[20] Delay primaquine treatment until after delivery.[21]

For the treatment of severe malaria worldwide, the WHO recommends the use of intravenous artesunate (2.4mg/kg IV or IM at 0, 12, and 24h then daily). Multiple studies have shown improved efficacy and safety of artesunate in the treatment of severe malaria as compared to previously used intravenous quinidine.[22][23][24] Artesunate currently has no approval from the FDA. Current CDC recommendations for the treatment of severe malaria in the United States include intravenous quinidine plus tetracycline, or doxycycline, or clindamycin. When quinidine is administered patient require continuous cardiac monitoring because of the potential risk of arrhythmia. Intravenous artesunate is available in the United States as an investigational new drug (IND) protocol #76,725 via the CDC ( for cases of severe malaria refractory to alternative treatment or when IV quinidine is unavailable.

Differential Diagnosis

  • Dengue fever
  • Chikungunya
  • Typhoid Fever
  • Sepsis from bacteremia
  • Viral hemorrhagic fever
  • Leptospirosis
  • Rickettsial infections
  • Brucellosis
  • Influenza
  • Viral hepatitis


 If appropriately recognized and treated, Plasmodium vivax malaria has a good prognosis and causes significantly fewer complications than falciparum malaria. However, it is recognized that more severe disease can occur. (See below under complications)


While classically P. vivax causes lower parasitemia and less severe disease than P. falciparum, more recent publications suggest that P. vivax is responsible for more severe disease than it was initially attributed. Case reports have demonstrated P. vivax causing cerebral malaria, renal failure, acute respiratory distress, and shock.[7][8]

 Another rare complication is splenic rupture which carries a very high mortality rate of up to 80%.[25]

 Pregnant women are at increased risk of adverse outcomes from all forms of malaria and P. vivax is no exception. Malaria in pregnancy is associated with higher levels of parasitemia and increases the risk of prematurity, miscarriage, low birth weight, neonatal or maternal death.[8][21]

Deterrence and Patient Education

Malaria prevention takes a multifaceted approach. For travelers, adherence to appropriate malaria prophylaxis medications is key. Also, appropriate clothing (long sleeves and pants) and use of DEET and/or permethrin has been shown to reduce the risk of malaria transmission greatly.[26] Additionally, recognizing that the Anopheles mosquitos general bite around dawn and dusk, appropriate behavioral modification may avoid infection as well.  For patients living or staying in endemic regions the use of treated mosquito nets correlates with decreased infection.[27]

Pearls and Other Issues

  • Plasmodium vivax is the most widespread malaria species with predominance in Latin America and Southeast Asia
  • The blood smear is the gold standard diagnostic tool for malaria, but in resource-limited clinical settings, rapid diagnostic tests (RDTs) are a reasonable alternative
  • Treatment decisions need to account for the severity of disease and local patterns of drug resistance
  • The uncomplicated disease is treatable with chloroquine or hydroxychloroquine in combination with primaquine
  • In the setting of severe disease outside of the United States, IV artesunate is the treatment of choice
  • In the United States severe vivax malaria can be treated with intravenous quinidine plus tetracycline, or doxycycline, or clindamycin (artesunate is available in the United States as an investigational new drug (IND) protocol # 76,725 via the CDC)

Enhancing Healthcare Team Outcomes

Recognizing and diagnosing malaria can be challenging as the symptoms are nonspecific and the diagnosis is uncommon in non-endemic areas. Thus, it is vital that all members of the healthcare team including nurses, midlevel providers, and physicians receive education and training in malaria diagnosis and management. Additionally, skilled laboratory technicians, trained in malaria parasite recognition is key to diagnostic accuracy. If uncertainty exists, a pathologist review may be required. Consultation with infectious disease specialists is often warranted especially in the setting of severe disease. Communication and coordination between healthcare providers (primary care provider, nurse practitioner, pharmacist) are critical to patient care.

  • Image 8685 Not availableImage 8685 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Malaria (Plasmodium Vivax) - Questions

Take a quiz of the questions on this article.

Take Quiz
One month after returning from a church mission trip to South America a 17-year-old female presents to the emergency department with fever and malaise. A blood smear is performed and demonstrates intra-erythrocytic plasmodium species. Visualized trophozoites appear as large ameboid rings, about one half the diameter of the RBC and Schuffner’s dots are present. On the way home the family is involved in a minor motor vehicle accident, following which the patient experiences severe abdominal pain and returns to the hospital with a rigid abdomen and hypotension. What is the most likely cause?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A patient from Brazil is has completed treatment for malaria with chloroquine and presents with signs and symptoms of malaria. The blood smear is diagnostic for relapse of Plasmodium vivax. What is the most likely cause?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A young female presents with fever, jaundice, and hepatosplenomegaly six months after a medical mission trip to Uganda. Diagnosis is made. Which of the following is invaded by this species?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
Plasmodium ovale has a dormant stage in the liver. Which other Plasmodium species also has a dormant stage in the liver?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A young male presents with jaundice, fever, and hepatosplenomegaly one year after a medical mission trip to Tanzania. He states he had previously been treated for malaria. Treatment for acute malaria is started, but he likely needs another treatment agent after the initial course. Before initiation of the drug, which of the following tests should be ordered?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Malaria (Plasmodium Vivax) - References


Howes RE,Battle KE,Mendis KN,Smith DL,Cibulskis RE,Baird JK,Hay SI, Global Epidemiology of Plasmodium vivax. The American journal of tropical medicine and hygiene. 2016 Dec 28;     [PubMed]
Gunalan K,Lo E,Hostetler JB,Yewhalaw D,Mu J,Neafsey DE,Yan G,Miller LH, Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proceedings of the National Academy of Sciences of the United States of America. 2016 May 31;     [PubMed]
Gunalan K,Niangaly A,Thera MA,Doumbo OK,Miller LH, Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends in parasitology. 2018 May;     [PubMed]
Dayananda KK,Achur RN,Gowda DC, Epidemiology, drug resistance, and pathophysiology of {i}Plasmodium vivax{/i} malaria. Journal of vector borne diseases. 2018 Jan-Mar;     [PubMed]
Newman RD,Parise ME,Barber AM,Steketee RW, Malaria-related deaths among U.S. travelers, 1963-2001. Annals of internal medicine. 2004 Oct 5;     [PubMed]
Hemmer CJ,Holst FG,Kern P,Chiwakata CB,Dietrich M,Reisinger EC, Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Tropical medicine     [PubMed]
Baird JK, Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinical microbiology reviews. 2013 Jan;     [PubMed]
Price RN,Tjitra E,Guerra CA,Yeung S,White NJ,Anstey NM, Vivax malaria: neglected and not benign. The American journal of tropical medicine and hygiene. 2007 Dec;     [PubMed]
Kochar DK,Saxena V,Singh N,Kochar SK,Kumar SV,Das A, Plasmodium vivax malaria. Emerging infectious diseases. 2005 Jan;     [PubMed]
Val F,Machado K,Barbosa L,Salinas JL,Siqueira AM,Costa Alecrim MG,Portillo HD,Bassat Q,Monteiro WM,Guimarães Lacerda MV, Respiratory Complications of {i}Plasmodium vivax{/i} Malaria: Systematic Review and Meta-Analysis. The American journal of tropical medicine and hygiene. 2017 Sep;     [PubMed]
Boyce MR,O'Meara WP, Use of malaria RDTs in various health contexts across sub-Saharan Africa: a systematic review. BMC public health. 2017 May 18;     [PubMed]
Abba K,Kirkham AJ,Olliaro PL,Deeks JJ,Donegan S,Garner P,Takwoingi Y, Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. The Cochrane database of systematic reviews. 2014 Dec 18;     [PubMed]
Haditsch M, Quality and reliability of current malaria diagnostic methods. Travel medicine and infectious disease. 2004 Aug-Nov;     [PubMed]
Maltha J,Gillet P,Jacobs J, Malaria rapid diagnostic tests in endemic settings. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2013 May;     [PubMed]
Pattanasin S,Proux S,Chompasuk D,Luwiradaj K,Jacquier P,Looareesuwan S,Nosten F, Evaluation of a new Plasmodium lactate dehydrogenase assay (OptiMAL-IT) for the detection of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2003 Nov-Dec;     [PubMed]
Tjitra E,Suprianto S,Dyer M,Currie BJ,Anstey NM, Field evaluation of the ICT malaria P.f/P.v immunochromatographic test for detection of Plasmodium falciparum and Plasmodium vivax in patients with a presumptive clinical diagnosis of malaria in eastern Indonesia. Journal of clinical microbiology. 1999 Aug;     [PubMed]
Fransisca L,Kusnanto JH,Satoto TB,Sebayang B,Supriyanto,Andriyan E,Bangs MJ, Comparison of rapid diagnostic test Plasmotec Malaria-3, microscopy, and quantitative real-time PCR for diagnoses of Plasmodium falciparum and Plasmodium vivax infections in Mimika Regency, Papua, Indonesia. Malaria journal. 2015 Mar 5;     [PubMed]
Dalrymple U,Arambepola R,Gething PW,Cameron E, How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malaria journal. 2018 Jun 8;     [PubMed]
Recht J,Ashley EA,White NJ, Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS neglected tropical diseases. 2018 Apr;     [PubMed]
Kovacs SD,Rijken MJ,Stergachis A, Treating severe malaria in pregnancy: a review of the evidence. Drug safety. 2015 Feb;     [PubMed]
Baird JK,Hoffman SL, Primaquine therapy for malaria. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2004 Nov 1;     [PubMed]
Dondorp A,Nosten F,Stepniewska K,Day N,White N, Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet (London, England). 2005 Aug 27-Sep 2;     [PubMed]
Jones KL,Donegan S,Lalloo DG, Artesunate versus quinine for treating severe malaria. The Cochrane database of systematic reviews. 2007 Oct 17;     [PubMed]
Hess KM,Goad JA,Arguin PM, Intravenous artesunate for the treatment of severe malaria. The Annals of pharmacotherapy. 2010 Jul-Aug;     [PubMed]
Hartley J, Oxford handbook of tropical medicine BMJ (Clinical research ed.). 2000 Mar 11;     [PubMed]
Goodyer LI,Croft AM,Frances SP,Hill N,Moore SJ,Onyango SP,Debboun M, Expert review of the evidence base for arthropod bite avoidance. Journal of travel medicine. 2010 May-Jun;     [PubMed]
Pryce J,Richardson M,Lengeler C, Insecticide-treated nets for preventing malaria. The Cochrane database of systematic reviews. 2018 Nov 6;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.