Oxygen Saturation


Article Author:
Brant Hafen


Article Editor:
Sandeep Sharma


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
6/2/2019 8:10:14 PM

Introduction

Oxygen saturation is an essential element in the management and understanding of patient care. Oxygen is tightly regulated within the body because hypoxemia can lead to many acute adverse effects on individual organ systems. These include the brain, heart, and kidneys. Oxygen saturation is a measure of how much hemoglobin is currently bound to oxygen compared to how much hemoglobin remains unbound. At the molecular level, hemoglobin consists of four globular protein subunits. Each subunit is associated with a heme group. Each molecule of hemoglobin subsequently has four heme binding sites readily available to bind oxygen. Therefore, during the transport of oxygen in the blood, hemoglobin is capable of carrying up to four oxygen molecules. Due to the critical nature of tissue oxygen consumption in the body, it is essential to be able to monitor current oxygen saturation. A pulse oximeter can be used to measure oxygen saturation. It is a noninvasive device that is placed over a person's finger. It measures light wavelengths to determine the ratio of the current levels of oxygenated hemoglobin to deoxygenated hemoglobin. The use of pulse oximetry has become a standard of care in medicine. It is often regarded as a fifth vital sign. As such, it is crucial for medical practitioners to understand the functions and limitations of pulse oximetry. They should also have a basic knowledge of oxygen saturation. 

Anatomy

Within the body, oxygen consumption can be defined as the product of the arterial-venous oxygen saturation differences and blood flow. The body consumes oxygen partially through aerobic metabolism. In this process, oxygen is used to convert glucose to adenosine triphosphate (ATP). An important aspect of this process is the oxygen-hemoglobin dissociation curve. In the blood, hemoglobin binds free oxygen rapidly to form oxyhemoglobin leaving only a small percentage of free oxygen dissolved in the plasma. The oxygen-hemoglobin dissociation curve is a plot of percent saturation of hemoglobin as a function of the partial pressure of oxygen (PO2). At a PO2 of 100 mmHg, hemoglobin will be 100% saturated with oxygen, meaning all four heme groups are bound. Each gram of hemoglobin is capable of carrying 1.34 mL of oxygen. The solubility coefficient of oxygen in plasma is 0.003. This coefficient represents the volume of oxygen in mL that will dissolve in 100mL of plasma for each 1 mmHg increment in the PO2. A formula then calculates the oxygen content, so that Oxygen Content = (0.003 × PO2) + (1.34 × Hemoglobin × Oxygen Saturation). This formula demonstrates that dissolved oxygen is a sufficiently small fraction of total oxygen in the blood; therefore, the oxygen content of blood can be considered equal to the oxyhemoglobin levels. [1]

As the PO2 decreases, the percentage of saturated hemoglobin also decreases. The oxygen-hemoglobin dissociation curve has a sigmoidal shape due to the binding nature of hemoglobin. With each oxygen molecule bound, hemoglobin undergoes a conformational change to allow subsequent oxygens to bind. Each oxygen that binds to hemoglobin increases its affinity to bind more oxygen, meaning the affinity for the fourth oxygen molecule is the highest. 

In the lungs, alveolar gas has a PO2 of 100 mmHg. However, due to the high affinity for the fourth oxygen molecule, oxygen saturation will remain high even at a PO2 of 60 mmHg. As the PO2 decreases, hemoglobin saturation will eventually fall rapidly, at a PO2 of 40 mmHg hemoglobin is 75% saturated. Meanwhile, at a PO2 of 25 mmHg, hemoglobin is 50% saturated. This is referred to as P50, where 50% of heme groups of each hemoglobin have a molecule of oxygen bound. The nature of oxygen saturation becomes increasingly important in light of the effects of right and left shifts. A variety of factors can cause these shifts.

A right shift of the oxygen saturation curve indicates decreased oxygen affinity of hemoglobin which will allow more oxygen to be available to tissues.[2] The mnemonic, "CADET, face Right!" can help to remember factors that can lead to a right shift. Here, "CADET" stands for PCO2, acid, 2,3-diphosphoglycerate, exercise, and temperature. The hemoglobin dissociation curve shifts right with an increase in each of these factors.

A left shift of the oxygen saturation curve indicates an increase in oxygen affinity of hemoglobin which reduces oxygen availability to the tissues. Factors that cause a left shift in the oxygen-hemoglobin dissociation curve include decreases in temperature, PCO2, acidity, and 2,3-bisphosphoglyceric acid, formerly named 2,3-diphosphoglycerate.

Indications

Due to the noninvasive nature and relative importance of pulse oximetry readings, there are very few situations where it is not indicated. Pulse oximetry can provide a rapid tool to assess oxygenation accurately. It is particularly useful in emergency situations for this reason. Cyanosis may not develop until oxygen saturation reaches about 67%. As such, pulse oximetry is extremely useful because the signs and symptoms of hypoxemia may not be visible on physical examination. 

Pulse oximetry is indicated in any clinical setting where hypoxemia may occur. These settings include patient monitoring in emergency departments, operating rooms, emergency medical services systems, postoperative recovery areas, endoscopy suites, sleep and exercise laboratories, oral surgery suites, cardiac catheterization suites, facilities that perform conscious sedation, labor and delivery wards, interfacility patient transfer units, altitude facilities, aerospace medicine facilities, and even patients' homes. [3]

Contraindications

Pulse oximetry is rarely contraindicated, but understanding its limitations is helpful. A relative contraindication may be a need to measure pH, PaCO2, total hemoglobin, and abnormal hemoglobins as in the setting of carbon monoxide toxicity. It is also essential to monitor the location of the probe for changes in skin conditions such as blisters or damage to the nail bed. Patients with burns may also require the probe to be repositioned every two to four hours.

Equipment

The pulse oximeter consists of a probe containing LEDs and a photodetector. The LEDs emit light at fixed, selected wavelengths. The photodetector measures the amount of light transmitted through a selected vascular bed such as a fingertip or earlobe. Pulse oximetry uses the Beer-Lambert law of light absorption. This law describes how light is absorbed when it passes through a clear solvent, such as plasma, that contains a solute that absorbs light at a specific wavelength, such as hemoglobin.[4] The absorption spectra of oxygenated and reduced hemoglobin differ. For this reason, arterial blood appears red while venous blood appears blue. However, because living tissue absorbs light, it is difficult to determine the ratio of saturation of hemoglobin in the body. The oximeter probe overcomes this difficulty by emitting pulses of light, one red and one infrared. A detector is placed opposite the lights on the other side of the tissue. The diodes switch on and off in rapid sequence, and the detector measures the differences. The measurements are fed into an algorithm in a microprocessor where the oxyhemoglobin saturation is calculated and eventually displayed to the user. [3]

Personnel

All medical personnel should train with a basic understanding of the use of pulse oximetry. Advanced users will find it helpful to understand the relationship of the pulse oximetry readings to blood hemoglobin concentrations, and how they are affected by the oxygen-hemoglobin dissociation curve.

Preparation

The most important consideration when preparing to apply the pulse oximeter is placing the monitor where the light will be able to shine through to the detector. Consider multiple factors before placing the pulse oximeter. Nail polish should be removed, and the finger wiped with an alcohol preparation. Examine the finger for other objects such as excess pigmentation. For example, tattoos may block light as it passes through the tissue. High-intensity ambient light has also been shown to interfere with the accuracy of pulse oximetry readings. Before application, the rubber shield should be intact on the pulse oximeter to help reduce ambient light input.

Technique

After verifying the appropriate placement site, place the pulse oximeter so that the light will penetrate through the tissue and be picked up by the detector. When placing the pulse oximeter on a fingertip, it is essential that the probe fits the finger well. It should not be too tight or too loose. Take extra caution to make sure the probe does not restrict circulation to the digit as this may provide an inaccurate reading. Ear probes are made for the earlobe. In an emergency situation, the pulse oximeter may have to be placed on the fingertip sideways as nail polish or pigment may obstruct the light.

Complications

Complications from using a pulse oximeter are rare. However, it is necessary to be aware of the probe site as blisters or nail damage may occur with extended use. Tissue injury may also occur in the setting of incompatible probes or during a substitution in the form of electrical shock or burns. It is also essential to know how to improve the measurements of pulse oximeters.

Possible ways to improve pulse oximeter signals include:

  • Warm and rub the skin
  • Apply a topical vasodilator
  • Try a different probe site, especially the ear
  • Try a different probe
  • Use a different machine[3]

Factors that may reduce the accuracy of pulse oximeter signals include:

  • Nail Polish[5]
  • Pigmentation of the skin
  • High-intensity ambient lighting
  • Excessive patient movement, or motion artifacts
  • Decreased perfusion
  • Presence of abnormal hemoglobin, carboxyhemoglobin
  • Intravascular dyes
  • Reduced accuracy with saturations below 83%

One significant risk of using a pulse oximeter is the possibility of treating an incorrect reading as accurate. False-negative results for hypoxemia and false-positive results for normoxemia or hypoxemia can occur. In these situations, a patient may receive inappropriate treatment, leading to harm.

False normal or high readings can occur in multiple different settings. Carboxyhemoglobin absorbs light at 660 nanometers, which is roughly the same as oxyhemoglobin. Thus, in situations where carboxyhemoglobin is high, a false normal reading may occur.[6] When glycohemoglobin A1c levels are greater than 7%, such as in patients with type 2 diabetes, an overestimation of arterial oxygen saturation may occur.[7] These situations may require an arterial blood gas to determine oxygen saturation accurately. It is also necessary to consider the clinical diagnosis when evaluating a patient with hypoxemic symptoms, as in the case of carbon monoxide toxicity. 

False low readings can also occur in multiple settings. Below are some situations that may cause falsely low readings to occur.

  • Methemoglobinemia
  • Sulfhemoglobinemia
  • Sickle hemoglobin
  • Abnormal inherited forms of hemoglobin[8]
  • Severe anemia
  • Venous congestion

Clinical Significance

The human eye's ability to detect hypoxemia is poor. The presence of central cyanosis, a blue coloration of the tongue and mucous membranes, is the most reliable predictor; it occurs at an oxyhemoglobin saturation of about 75%.[3] Pulse oximetry provides a convenient, noninvasive method to measure blood oxygen saturation continuously. It can also help to eliminate medical errors. Pulse oximetry has a sensitivity of 92% and a specificity of 90% when detecting hypoxia at a threshold of 92% oxygen saturation.[9]

There is no set standard of oxygen saturation where hypoxemia occurs. It is generally accepted that a normal resting oxygen saturation of less than 95% is considered abnormal.[10] Therefore, it remains vital to observe patients for the clinical markers of hypoxemia. The brain is the most sensitive organ, and visual, cognitive, and electroencephalographic changes develop when the oxyhemoglobin saturation is less than 80% to 85%. It is unclear whether there are long-term deficits from hypoxemia. Patients with nocturnal hypoxemia do not seem to develop life-threatening complications despite abnormally low oxygen saturation.[3]

Enhancing Healthcare Team Outcomes

All healthcare workers including nurses should be familiar with pulse oximetry.  Pulse oximetry should be regarded as an accurate measurement of the patient's overall oxygen saturation. While few studies have demonstrated a decrease in mortality from the use of pulse oximetry, it can be safely determined that it provides more benefit than harm. Clinicians should be aware of the limitations and errors associated with pulse oximetry. They should use their best clinical judgment when deciding whether further workup is needed. In the case of hypoxemia, a physician should always consider whether an arterial blood sample would provide a more accurate measure of oxygen saturation than pulse oximetry.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Oxygen Saturation - Questions

Take a quiz of the questions on this article.

Take Quiz
A 34-year-old female is undergoing fertility testing. She and her husband have been trying to conceive a child but have been unsuccessful. Her husband has two other children from a previous marriage. The patient elected to have a diagnostic laparoscopy to check for tubal patency after a hysterosalpingography was determined unclear. She reports that she has recently had a symptomatic upper respiratory infection. During the procedure, the patient experiences a drop in her oxygen saturation from 97% to 88%, and during this time her heart rate and blood pressure remained stable. What is the most likely cause of this patient's drop in oxygen saturation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 57-year-old male presents for a general medical screening. He reports that he is in good health with no current or past medical diagnoses. He also reports always taking good care of his health and remains active with a healthy diet and daily exercise routine. As part of his health maintenance examination blood samples are obtained. One sample contains a plasma volume of 100 mL. How much oxygen per mL, would you expect to find in his plasma sample?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents for a routine physical exam. They have no significant past medical history and are in good health. What would be their expected SpO2?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents to the emergency department with a complaint of dyspnea on exertion. The patient has a long history of deep venous thrombosis. Vitals signs are a heart rate of 114 beats/min, blood pressure 140/92 mmHg, respiratory rate 22, and temperature of 37C. A chest x-ray is obtained and is normal. You suspect the patient is presenting with a pulmonary embolism. The patient is appropriately triaged and eventually transferred to the floor in stable condition. Two days later the patient's urine has changed from amber to a dark cola color. The complication the patient is presenting with now is a most likely due to the bodies shift in which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 74-year-old female presents to the emergency department with a complaint of dyspnea and chest pain. She states that the symptoms began a week ago and have progressively gotten worse. She has had multiple emergency department visits over the last year with similar complaints. Vitals signs are a temperature of 37C, heart rate 87 beats/min, respiratory rate 16, blood pressure 127/72 mmHg, and oxygen saturation 89% on room air. The patient reports a 60 pack year smoking history and states she has tried to quit smoking multiple times with no success. Physical examination shows a patient with pink skin, pursed lip breathing on inspiration and expiration, an increased anteroposterior chest diameter, and abnormally large fingertips with a slight blue tint. The patient's disease state has exacerbated the limitation of the pulmonary diffusion process, which can be described as which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Oxygen Saturation - References

References

Hanning CD,Alexander-Williams JM, Pulse oximetry: a practical review. BMJ (Clinical research ed.). 1995 Aug 5     [PubMed]
Kaufman DP,Dhamoon AS, Physiology, Oxyhemoglobin Dissociation Curve null. 2018 Jan     [PubMed]
Clause D,Detry B,Rodenstein D,Liistro G, Stability of oxyhemoglobin affinity in patients with obstructive sleep apnea-hypopnea syndrome without daytime hypoxemia. Journal of applied physiology (Bethesda, Md. : 1985). 2008 Dec     [PubMed]
Bongard F,Sue D, Pulse oximetry and capnography in intensive and transitional care units. The Western journal of medicine. 1992 Jan     [PubMed]
Grace RF, Pulse oximetry. Gold standard or false sense of security? The Medical journal of Australia. 1994 May 16     [PubMed]
Hinkelbein J,Koehler H,Genzwuerker HV,Fiedler F, Artificial acrylic finger nails may alter pulse oximetry measurement. Resuscitation. 2007 Jul     [PubMed]
Pu LJ,Shen Y,Lu L,Zhang RY,Zhang Q,Shen WF, Increased blood glycohemoglobin A1c levels lead to overestimation of arterial oxygen saturation by pulse oximetry in patients with type 2 diabetes. Cardiovascular diabetology. 2012 Sep 17     [PubMed]
Sarikonda KV,Ribeiro RS,Herrick JL,Hoyer JD, Hemoglobin lansing: a novel hemoglobin variant causing falsely decreased oxygen saturation by pulse oximetry. American journal of hematology. 2009 Aug     [PubMed]
ATS/ACCP Statement on cardiopulmonary exercise testing. American journal of respiratory and critical care medicine. 2003 Jan 15     [PubMed]
Lee WW,Mayberry K,Crapo R,Jensen RL, The accuracy of pulse oximetry in the emergency department. The American journal of emergency medicine. 2000 Jul     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.