Oculocardiac Reflex


Article Author:
Leah Dunville


Article Editor:
Jeremy Kramer


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
5/17/2019 11:10:35 PM

Introduction

The oculocardiac reflex (OCR), also known as the Aschner reflex or trigeminovagal reflex (TVR), was first described in 1908 as a reduction in heart rate secondary to direct pressure placed on the eyeball. It is defined by a decrease in heart rate by greater than 20% following globe pressure or traction of the extraocular muscles. The reflex most commonly results in sinus bradycardia. However, it also has a reported association with reduced arterial pressure, arrhythmia, asystole, and even cardiac arrest. This reflex has most notably been depicted during ophthalmologic procedures, more specifically during strabismus surgery; however, it also may be activated by facial trauma, regional anesthetic nerve blocks, and during mechanical stimulation.[1][2][3]

The incidence of the oculocardiac reflex is reported to be anywhere from 14% to 90% and decreases with age, meaning pediatric patients are most at risk. Pediatric patients are also more susceptible to the detrimental consequences of this reflex secondary to having a greater dependency on heart rate to maintain cardiac output. The wide range of incidence and the severity of OCR is reportedly attributed to the effects of hypoxia, hypercarbia, acidosis, and the anesthetic agents used during surgery.[4][5]

Anatomy

The OCR arc consists of an afferent and efferent limb. The trigeminal nerve, otherwise known as the fifth cranial nerve, serves as the sensory afferent limb. The vagus nerve, also known as cranial nerve ten, comprises the efferent limb of the OCR. The pathway is initiated by activation of stretch receptors in the ocular and periorbital tissues. The short and long ciliary nerves conduct impulses that carry the sensory message to the ciliary ganglion. From there the impulses are transported by way of the ophthalmic division of the trigeminal nerve to the Gasserian ganglion, followed by the trigeminal nucleus, where the afferent limb will terminate in the central nervous system (CNS). The CNS will then process this sensory information, and internuclear communication will occur between the trigeminal sensory nucleus and the visceral motor nucleus of the vagus nerve. This stimulates the efferent limb, causing impulses to exit the brainstem and transmit to the myocardium to synapse as the sinoatrial node and activate the vagal motor response. The resultant effects include negative chronotropy, leading to bradycardia.

Risk Factors

The OCR has been associated with various triggering stimuli, with the most common being traction to the extraocular muscles. Multiple studies have reported an increased incidence with medial rectus traction when compared to other ocular muscles. However, there also have been studies reporting no increased association with traction to a specific extraocular muscle over another.

Additional stimuli that have been linked to triggering the OCR include direct pressure to the globe, ocular manipulation, and ocular pain. Secondary to increased pressure, retrobulbar blocks, ocular hematomas, and facial or orbital trauma also may induce activation of the reflex. It is also important to note that this is a fatigable reflex, meaning its intensity will decrease with multiple, repeated stimuli.[6][7][8]

Complications

The complications secondary to the OCR are related to the vagal responses and may include the following:

  • Sinus bradycardia
  • Arrhythmia
  • Reduced atrial pressure
  • Ventricular tachycardia
  • Ventricular fibrillation
  • Multifocal premature ventricular contractions
  • Ventricular bigeminy
  • Asystole
  • Cardiac arrest
  • Dizziness
  • Lightheadedness
  • Nausea
  • Weakness

Clinical Significance

Though the most common side effect of the OCR is bradycardia, one must worry about a further decline to potentially fatal arrhythmias, asystole, and even cardiac arrest. In two studies, one in 1973 by Apt et al. and another in 2015 by Espahbodi et al. reported the OCR occurrence rate of OCR in patients undergoing ophthalmologic surgeries as 67.9% and 63% respectively. Though the majority of these patients do not experience detrimental outcomes following activation of the OCR, the potential makes this phenomenon important to note.[9][10][11]

Activation of the OCR also has been associated with noncardiac consequences. Due to activation of the vagal motor response, other vagal effects reported include hypotensive episodes, syncope, and gastrointestinal responses such as nausea and vomiting. This has been questioned to have an impact on the severity of postoperative nausea and vomiting (PONV). In the pediatric population, the incidence of PONV has been reported to be as high as 85% following strabismus surgery and is the most common reason for inpatient admission following an outpatient procedure.

When discussing prevention and treatment of the OCR and its potentially devastating consequences, it is important to know that the only definitive treatment is the immediate cessation of the triggering stimulus. When in the operating room, immediate removal of pressure to the globe of the eye or surrounding orbital tissues can terminate the reflex. The next step of the procedure is to proceed with caution. Unfortunately, in less controlled circumstances, such as trauma, cessation of the triggering stimulus can be more challenging. In these instances, pharmacologic management may be required, and cardiac monitoring should be initiated.

Additionally, it is important to know what anesthetic agents can be used to help decrease OCR occurrence, as the incidence may vary with each agent used. Multiple studies have shown that pretreatment with intravenous anticholinergics, such as atropine or glycopyrrolate, decreases the incidence of OCR. Atropine works by blocking peripheral muscarinic receptors of the heart and causes increased firing at the sinoatrial node as well as conduction through the AV node. This opposes the vagal response, or the efferent limb, of the OCR. Through its stimulation of sympathetic activity, ketamine may counteract vagal stimulation caused by OCR. A study by Choi et al. reported a lower incidence of OCR when a ketamine infusion was used as the primary anesthetic agent when compared to sevoflurane, halothane, and propofol. Ketamine was reported by Espahbodi et al. in 2015 to be superior to atropine in decreasing the incidence of OCR. In another study, ketamine also was associated with a lower incidence of postoperative nausea, vomiting, and agitation.

Blunting the afferent limb of the reflex arc can also decrease OCR occurrence. This can be done using a retro or peribulbar block with xylocaine hydrochloride to block the ciliary ganglion. This in combination with another agent shown to decreased OCR incidence, such as atropine, can provide further protection from OCR activation.

It is important to note that administration of fast-acting opioids, such as fentanyl, sufentanil, and remifentanil, can potentially facilitate bradycardia caused by the OCR. Many anesthetic agents have been studied regarding their effects on OCR, and it is crucial to know how each acts on the reflex. Many still require further investigation. However, it has repeatedly been reported that preanesthetic medication with atropine, retrobulbar blocks, or other agents used to blunt the OCR should be routinely utilized during procedures or traumas related to the eye. This is to protect patients against the potential consequences of OCR activation.

Enhancing Healthcare Team Outcomes

Due to the various stimuli causing activation of the OCR, this becomes a concern anytime the orbit is manipulated and, therefore, it is a potential obstacle in the operating room. Anesthesiologists, ophthalmologists, maxillofacial surgeons, trauma teams, anesthesia nurses and emergency physicians who deal with the structures of the orbit or face need to be aware of this reflex, its potential consequences, and how to manage or prevent its occurrence.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Oculocardiac Reflex - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is not involved in the oculocardiac reflex arc?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What drug can be used to abolish the oculocardiac reflex?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the efferent branch of the oculocardiac reflex arch?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the afferent limb of the oculocardiac reflex?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The Aschner reflex involves which of the following cranial nerves?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Oculocardiac Reflex - References

References

Waldschmidt B,Gordon N, Anesthesia for pediatric ophthalmologic surgery. Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus. 2019 Apr 14;     [PubMed]
Dunphy L,Anand P, Paediatric orbital trapdoor fracture misdiagnosed as a head injury: a cautionary tale! BMJ case reports. 2019 Apr 3;     [PubMed]
Arnold RW,Bond AN,McCall M,Lunoe L, The oculocardiac reflex and depth of anesthesia measured by brain wave. BMC anesthesiology. 2019 Mar 14;     [PubMed]
Rahimi Varposhti M,Moradi Farsani D,Ghadimi K,Asadi M, Reduction of oculocardiac reflex with Tetracaine eye drop in strabismus surgery. Strabismus. 2019 Mar;     [PubMed]
Jean YK,Kam D,Gayer S,Palte HD,Stein ALS, Regional Anesthesia for Pediatric Ophthalmic Surgery: A Review of the Literature. Anesthesia and analgesia. 2019 Jan 21;     [PubMed]
Shakil H,Wang AP,Horth DA,Nair SS,Reddy KKV, Trigeminocardiac Reflex: Case Report and Literature Review of Intraoperative Asystole in Response to Manipulation of the Temporalis Muscle. World neurosurgery. 2019 Feb;     [PubMed]
Ducloyer JB,Couret C,Magne C,Lejus-Bourdeau C,Weber M,Le Meur G,Lebranchu P, Prospective evaluation of anesthetic protocols during pediatric ophthalmic surgery. European journal of ophthalmology. 2018 Oct 3;     [PubMed]
Başağaoğlu B,Steinberg A,Tung IT,Olorunnipa S,Maricevich RS, Oculocardiac Reflex as a Late Presentation of Orbital Floor Fracture. The Journal of craniofacial surgery. 2018 Oct;     [PubMed]
Bloch M, Oculocardiac reflex: 'My heart just stopped'. Emergency medicine Australasia : EMA. 2018 Aug;     [PubMed]
Arnold RW,Biggs RE,Beerle BJ, Intravenous dexmedetomidine augments the oculocardiac reflex. Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus. 2018 Jun;     [PubMed]
DesPain AW,Chapman J,Shaukat H, Oculocardiac Reflex in a Pediatric Trauma Patient. Pediatric emergency care. 2018 Feb 28;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.