Anatomy, Head and Neck, Foramen Lacerum


Article Author:
Ali Bazroon


Article Editor:
Paramvir Singh


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
5/5/2019 11:20:24 AM

Introduction

The existence of multiple foramina in the base of the skull permits the passing of crucial vital tissues, most importantly, blood vessels and nerves which pass from the head to the body and vice versa. Foramen lacerum is an irregular opening located in the middle cranial fossa at the base of the skull. It is covered by cartilage after birth. It is formed by the apex of the petrous temporal bone and allows the passing of the internal carotid artery, the deep petrosal nerve which arises from the carotid plexus that surround the internal carotid artery, and greater petrosal nerve.[1]

Structure and Function

The foramen lacerum is in the middle aspect of the petrous temporal bone, between the central part of the body of the sphenoid anteriorly, the basilar part of the occipital bone medially, and the carotid canal. This location allows the passing of the internal carotid artery to foramen lacerum then to cavernous sinus to supply the brain parenchyma and the eye postero-laterally.[1]

The deep petrosal nerve and the greater petrosal nerve meet in the foramen lacerum to form the Vidian nerve, which is composed of the fusion of deep petrosal nerve and great petrosal nerve in the pterygoid canal.

The pterygoid canal is an opening that extends from the bony part of the lacerum anteriorly, to reach the pterygopalatine fossa.

The Vidian nerve carries parasympathetic and sympathetic fibers to the pterygopalatine ganglion, which is in the pterygopalatine fossa. The parasympathetic fibers are the contribution of the greater petrosal nerve, and the sympathetic fibers are the contribution of the deep petrosal nerve which originates in the foramen lacerum from the carotid plexus.

Pterygopalatine fossa which contains the pterygopalatine ganglion is located inferior to the posterior part of the inferior orbital fissure, behind the posterior wall of the maxillary sinus and antero-inferiorly to the middle cranial fossa.[1][2][3]

The internal carotid artery (ICA), passes from the carotid canal to the foramen lacerum. In the lacerum, Post-ganglionic sympathetic fibers ascend along with the internal carotid artery known as deep petrosal nerve connect to the greater petrosal nerve gives the Vidian nerve or nerve to the pterygoid canal.[1]

Embryology

The petrous part of the temporal bone along with the occipital bone derives from the paraxial mesoderm. Both develop from endochondral ossification which starts developing from a mesenchyme layer which condensed into cartilage then ossify.[4]

Blood Supply and Lymphatics

The internal carotid artery, which begins at the bifurcation of the common carotid artery at the upper border of thyroid cartilage supplies the eyes, forehead, part of the nose, and mainly the brain. The internal carotid artery enters the cranial cavity and leaves the neck by the carotid canal in the petrous temporal bone; then it bends to enter the cartilaginous lacerum foramina. In the lacerum, it gives of the deep petrosal nerve. After giving off the deep petrosal nerve, it continues vertically, forward to enter the cavernous sinus. Eventually, it leaves the cavernous sinus medial to the anterior clinoid process of the sphenoid bone to give its terminal branches, the anterior and middle cerebral arteries, and the posterior communicating artery.[1]

Nerves

The two nerves that pass from the foramen lacerum are the greater petrosal nerve, which represents the pre-ganglionic parasympathetic fibers, and the deep petrosal nerve which, representing the post-ganglionic sympathetic fibers. Both of these nerves form the autonomic fibers of the facial nerve and supply the submandibular, sublingual, salivary, nasal and palatine glands.

Pre-ganglionic para-sympathetic fibers originate from the superior salivatory nucleus in the pons. Then it passes to the internal auditory canal along with the nervus intermedius of the facial nerve. Both of them transport to the geniculate ganglion. Greater petrosal nerve (GPN) arises from the geniculate ganglion then passes vertically to the floor of the middle cranial fossa via the hiatus of greater petrosal nerve. In the middle cranial fossa, the greater petrosal nerve passes medially to enter the foramen lacerum and fuses there with the deep petrosal nerve, forming the Vidian nerve or pterygoid nerve, which passes from the pterygoid canal to the pterygopalatine fossa (PPF). Then para-sympathetic fibers of the Vidian nerve synapse within the pterygopalatine fossa to supply the lacrimal, buccal, nasopharynx and nasal glands.

Pre-ganglionic sympathetic fibers originate from the intermediate horn of the spinal gray matter of the spinal cord of T1.  Then ascend to the cervical sympathetic trunk, which eventually lays on the superior cervical ganglion to synapse with postganglionic neurons. Post-ganglionic sympathetic fibers ascend along with the internal carotid artery. It enters the skull from the carotid canal then to the foramen lacerum where it gives the deep petrosal nerve (DPN). The deep petrosal nerve then fuses with the greater petrosal nerve to form the Vidian nerve, which passes through the pterygoid canal to the pterygopalatine fossa. These post-ganglionic sympathetic fibers do not synapse with the pterygopalatine ganglion and supply the secretomotor elements of lacrimal glands and nasal mucosa.[1][2][5][6][7]

Surgical Considerations

Anatomical variations of the pterygoid canal are very significant for surgeons who usually take an inferior medial approach to the pterygoid canal during Vidian neurectomy, while in some patients the pterygoid canal is located above the level of the anterior genu of the petrous part of the internal carotid artery.[8]

Clinical Significance

Iatrogenic or traumatic injury to the neck may cause damage to the internal carotid artery or even the sympathetic plexus around it, causing damage to the deep petrosal nerve, which also can be damaged by neck surgery, sphenoidal surgery, or even Vidian neurectomy.[9]

Atheroma or emboli dislodged from the heart in the internal carotid artery may cause visual impairment or in more severe cases blindness, due to either lack of blood flow in the retinal artery or complete blockage.[2]

Cluster headache that is characterized by unilateral recurrent attacks of severe headache, accompanied by severe pain around the eye and involvement of the deep petrosal nerve and the great petrosal nerve which leads to rhinorrhea, nasal congestion, and excessive lacrimation. Vidian neurectomy is a procedure to remove the Vidian nerve; it is considered as one of the possible treatments in cluster headache, to decrease lacrimation and rhinitis.[10][11]

Crocodile tear syndrome, characterized by excessive tearing unilateral or bilateral after exposure to taste or smell stimuli, instead of increase salivation. It happens due to misdirected stimulation to the lacrimal gland instead of the submandibular gland during the recovery period after facial nerve injury. The result of excessive lacrimal gland stimulation by the great petrosal nerve is ipsilateral tearing of the eyes, instead of increase salivation.[6][12]


  • Image 108 Not availableImage 108 Not available
    Contributed Illustration by Beckie Palmer
Attributed To: Contributed Illustration by Beckie Palmer

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Head and Neck, Foramen Lacerum - Questions

Take a quiz of the questions on this article.

Take Quiz
A 17-year-old male, involved in a fight led to a basal skull fracture. X-ray shows a fracture in the foramen lacerum. What is the most likely manifestation expected in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 70-year-old male presented to the emergency department complaining of blurred vision on his right eye. CT angiogram shows an embolus on the right ophthalmic artery. By which route would an embolus most likely reach the ophthalmic artery?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 50-year-old male presents to the ED following a motor vehicle accident with suspected cervical dislocation. The patient undergoes neck surgery to fix the dislocation. After the surgery, the patient complained of dry eyes and an inability to produce tears. Which of the following is the most likely cause of the patient's symptoms?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 44-year-old male patient presented to the hospital with fever and fatigue. His fever started one day ago and is not associated with cough, sputum production, hemoptysis or urinary symptoms. The patient also complains of easy bruising and impaired hearing sensation. Past surgical history is significant for a right tibial fracture that is not proceeded by significant trauma which was treated with open reduction and internal fixation. Physical examination is remarkable for multiple bruises. His vital signs are as follows: blood pressure of 135/90 mmHg, heart rate of 90 bpm, respiratory rate of 19 bpm and temperature of 38.1 c. His complete blood count shows pancytopenia but the rest of the septic workup was negative. X-ray of the hip showed increase thickening of the bone. CT scan of the head demonstrated thickening of the skull around the foramen lacerum. Which one of the following might be an additional manifestation in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Head and Neck, Foramen Lacerum - References

References

Khonsary SA,Ma Q,Villablanca P,Emerson J,Malkasian D, Clinical functional anatomy of the pterygopalatine ganglion, cephalgia and related dysautonomias: A review. Surgical neurology international. 2013;     [PubMed]
Cappello ZJ,Potts KL, Anatomy, Pterygopalatine Fossa 2019 Jan;     [PubMed]
Budu V,Mogoantă CA,Fănuţă B,Bulescu I, The anatomical relations of the sphenoid sinus and their implications in sphenoid endoscopic surgery. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie. 2013;     [PubMed]
Singh O,M Das J, Anatomy, Head and Neck, Jugular Foramen 2019 Jan;     [PubMed]
Tepper SJ,Caparso A, Sphenopalatine Ganglion (SPG): Stimulation Mechanism, Safety, and Efficacy. Headache. 2017 Apr;     [PubMed]
Modi P,Arsiwalla T, Crocodile Tears Syndrome 2019 Jan;     [PubMed]
Dulak D,Naqvi IA, Neuroanatomy, Cranial Nerve 7 (Facial) 2019 Jan;     [PubMed]
Adin ME,Ozmen CA,Aygun N, Utility of the Vidian Canal in Endoscopic Skull Base Surgery: Detailed Anatomy and Relationship to the Internal Carotid Artery. World neurosurgery. 2019 Jan;     [PubMed]
Chen J,Xiao J, Morphological study of the pterygoid canal with high-resolution CT. International journal of clinical and experimental medicine. 2015;     [PubMed]
Waldenlind E,Sjöstrand C, Pathophysiology of cluster headache and other trigeminal autonomic cephalalgias. Handbook of clinical neurology. 2010;     [PubMed]
Nappi G,Moskowitz MA, Cluster headache and trigeminal autonomic cephalalgias general aspects. Handbook of clinical neurology. 2010;     [PubMed]
Spiers AS, Syndrome of     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.