Acute Disseminated Encephalomyelitis (ADEM)


Article Author:
Arayamparambil Anilkumar
Lisa Foris


Article Editor:
Prasanna Tadi


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Saifur Rehman
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
8/14/2019 11:26:02 PM

Introduction

Acute disseminated encephalomyelitis (ADEM), also referred to as post-infectious encephalomyelitis, is an acute, rapidly progressive, autoimmune process that occurs in the central nervous system. ADEM is characterized by demyelination in the brain and spinal cord (and occasionally the optic nerve), as a result of inflammation that occurs in response to a preceding infection or immunization.[1][2]

Etiology

ADEM has been associated with some infectious organisms and immunizations. Most commonly associated organisms include cytomegalovirus, Epstein-Barr virus, herpes simplex virus, human herpes-virus-6, influenza virus, hepatitis A, human immunodeficiency virus, and mycoplasma pneumonia – though, in the majority of cases, the causative pathogen is not identified. Additional associated bacterial infections include Leptospira, beta-hemolytic streptococci, and Borrelia burgdorferi.[3][4][5] Prior to the development of immunization programs, ADEM was most commonly associated with measles (in addition to an increased incidence in association with rubeola, rubella, mumps, varicella, and smallpox as well). Today, ADEM is more commonly associated with viral infections of the gastrointestinal or respiratory tracts.

Rabies (Semple) vaccine has been the earliest reported vaccine-associated with ADEM. It is seen in both adults and children approximately eight to 21 days following immunization. Other less commonly associated vaccines include those for measles, pertussis, tetanus, influenza, hepatitis B, diphtheria, rubella, pneumococcus, varicella, smallpox, human papillomavirus, and poliomyelitis.

Epidemiology

Although it is a rare illness, there is an estimated 1 in 125,000-250,000 individuals affected by ADEM each year. Though most cases occur in children (majority younger than age ten, and the remainder between the ages ten to 20), ADEM has been documented in adults ranging from ages 18-82 as well. The disease occurs more commonly in males than in females (male to female ratio 1.3:1), and more often seasonally in the winter and spring (historically, the colder months of the year).

The risk of developing ADEM depends on some factors including an individual’s genetics, exposure to infectious organisms, immunization exposure, and lighter skin pigmentation. All ethnic groups are susceptible to developing ADEM, and the condition occurs worldwide.

In 50% - 75% of cases, ADEM is associated with either a preceding infection or vaccination, and the majority of cases follow a viral or bacterial infection (although the causative pathogen is not always identified).

Pathophysiology

The exact mechanism of ADEM is not completely understood, but it is thought to result from inflammation triggered by an environmental stimulus (e.g., vaccination or infectious disease) in genetically susceptible individuals. ADEM has been further characterized as an autoimmune disorder causing demyelination in the central nervous system (CNS). 

It has been proposed that either a cell-mediated response or antibodies produced in response to an environmental trigger cross-react with myelin autoantigens (e.g., myelin basic protein, myelin oligodendrocyte protein, proteolipid protein) in the CNS, resulting in the demyelination characteristically seen in ADEM. [6] An alternatively proposed mechanism suggests that ADEM may occur as a result of increased vascular permeability and congestion in the CNS due to the inflammation and circulating immune complexes that follow vaccination or infection. Mononuclear infiltration of the vasculature of the CNS is thought to result in edema surrounding vessels and, at times, hemorrhage causing damage to surrounding neuronal cells (e.g., demyelination, necrosis or gliosis) and ultimately, the variety of possible clinical presentations and prognoses seen in individuals with ADEM. The inflammation and increased vascular permeability associated with ADEM has also been proposed as a mechanism by which breakdown of the blood-brain-barrier occurs, allowing infiltration of the CNS by both antigens and inflammatory cells involved in the concomitant cell-mediated immune response.

History and Physical

ADEM is classically seen following an illness (or less frequently, a vaccination) with a lag time ranging from a few days to up to 60 days (mean is 26 days). Although in about 25% of affected individuals, there may not be an obvious preceding event. The onset of ADEM is acute and rapidly progressive, and it is characterized by multifocal neurologic symptoms that require early hospitalization.

Some non-specific (e.g., constitutional) symptoms associated with ADEM include fever, headache, fatigue, malaise, nausea, and vomiting. In approximately 20% - 52% of cases in adults, there may be associated with altered mental status (encephalopathy) which may involve irritability, confusion, psychosis, somnolence, or even coma. In addition to motor and sensory deficits (e.g., paraparesis, tetraparesis), patients may also present with brainstem deficits (e.g., dysarthria or oculomotor dysfunction), or other neurologic abnormalities (e.g., seizures, meningismus, ataxia, aphasia, nystagmus, optic neuritis, urinary retention, elevated intracranial pressure, or extrapyramidal signs).

Some adults with ADEM may also develop signs of peripheral nervous system involvement which are defined by abnormalities on electrodiagnostic testing. Signs and symptoms of peripheral involvement may include paresthesia or anesthesia of the limbs or muscle atrophy.

Patients with ADEM presenting with peripheral involvement have been seen to have a worse prognosis and increased risk of relapse compared to those with only CNS involvement.

Evaluation

The imaging modality of choice for evaluating ADEM is MRI. It demonstrates hyperintense lesions on T2-weighted, fluid-attenuated inversion recovery (FLAIR), proton-density and echo-planar trace diffusion MRI sequences. Lesions are not typically visualized on T1-weighted sequences, though larger lesions may appear as hypointensities. Imaging of ADEM may reveal a single lesion (e.g., large or small, confluent, or solitary) or multiple lesions throughout the white (e.g., periventricular and subcortical) and grey (e.g., basal ganglia, thalamus, cortex) matter of the brain – most characteristically seen as multiple, widespread, asymmetric lesions bilaterally throughout the brain. [7][8][9]There may be additional infratentorial lesions in the brainstem, cerebellum, and spinal cord, but these rarely present as isolated lesions without an accompanying lesion in the brain.

ADEM lesions typically present with indistinct margins on imaging. This may help differentiate these lesions from the clear-cut margins typical of the lesions seen in multiple sclerosis.

It is important to note that ADEM may present with a normal MRI, in other words, without any visual evidence of disease (even after multiple scans). In some cases, it is also possible that MRI lesions may appear weeks following the onset of symptoms. Although most MRI lesions resolve within 18 months, repeat imaging is warranted, especially early in the course of the disease, as there may be fluctuations in lesions (e.g., new lesions may appear while older lesions resolve) despite the patient potentially remaining asymptomatic.

Although MRI is the imaging modality of choice, a CT scan may be considered in an urgent setting to rule out any other potentially life-threatening causes of neurological dysfunction. In the case of ADEM, a CT scan is most often unremarkable, especially earlier on in the course of the disease. In later stages, ADEM may appear as focal or multifocal regions of white matter damage on CT. Cerebrospinal fluid (CSF) analysis (e.g., following a lumbar puncture) may reveal abnormalities in 50% - 80% of patients with ADEM. These findings may include lymphocytic pleocytosis (with a white blood cell count of fewer than 100 cells/mL) and a slightly elevated CSF protein (Fewer than 70 mg/dL). More specifically, patients with ADEM are often seen to have an elevated level of cerebrospinal fluid (CSF) myelin basic protein on CSF analysis. This is a sign of demyelination in the CNS.

An EEG done on a patient with ADEM may reveal a disturbed sleep pattern, and either a focal or generalized slowing of electrical activity.

There is no specific biomarker or diagnostic test that establishes a diagnosis of ADEM.  It is, however, considered, when a patient presents with multifocal neurologic deficits without any prior history of neurologic dysfunction. One or more demyelinating lesions (either supra- or infratentorial) on brain MRI will further support a diagnosis of ADEM. These findings, taken together with a history of infection or immunization, as well as abnormal CSF findings, will further support a diagnosis of ADEM (but are not necessary to do so).

Although there are no set diagnostic criteria for ADEM in adults, for children, a diagnosis is made based on the presence of both encephalopathy and multifocal CNS involvement.

Children with ADEM have also been found to have an elevated sedimentation rate and a slightly elevated platelet count.

Treatment / Management

Empiric treatment with acyclovir may be initiated in patients presenting with meningeal signs, fever, acute encephalopathy, and signs of inflammation in either the blood or CSF.

However, the mainstay of treatment for ADEM is immunosuppression with high-dose intravenous glucocorticoids. These can be started simultaneously with acyclovir or antibiotics on the initial patient presentation. [10][11]If a patient is not improving or is responding poorly to glucocorticoid treatment, try intravenous immune globulin (IVIG), plasma exchange, or cyclophosphamide.

Pearls and Other Issues

In adults, ADEM is difficult to differentiate from an initial attack of multiple sclerosis (MS) based on a single clinical encounter or radiographic evidence alone.  It is important to diagnose a patient with either condition accurately because the approach to the treatment of the two conditions differs significantly. Though MS is characterized by repeated attacks of neurological dysfunction separated in both time and space, there is a significant overlap between the two conditions regarding CNS symptoms and radiographic evidence. Patients with ADEM are more likely to have a history of prodromal viral illness, along with fever, neck stiffness, ataxia, and impaired consciousness and/or encephalopathy, while MS patients typically do not present with these complaints. Additionally, MS is more often monosymptomatic (e.g., optic neuritis alone) and has a chronic, relapsing, and remitting course.[12][13]

A brain MRI may be helpful in distinguishing between the two. ADEM typically involves larger, bilateral, asymmetric lesions that are also higher in number than those typically seen with MS. Brain lesions tend to be more well-defined when seen in MS vs. the ill-defined lesions seen in ADEM. MS is more likely to be associated with brain lesions of varying ages while ADEM typically has lesions that are all approximately the same age. Lesions in the thalamus are seen more commonly in ADEM, while periventricular lesions are more common in MS.

Acute hemorrhagic encephalomyelitis (AHEM), or acute hemorrhagic leukoencephalitis, acute necrotizing hemorrhagic leukoencephalitis of Weston-Hurst) is a hyperacute variant of ADEM that rapidly progresses to coma and may be fatal. AHEM is triggered similarly to ADEM, following exposure to an infectious organism or vaccination.  Symptoms of AHEM include asymmetric multifocal neurologic deficits, meningismus, headache, and seizures.[14]

A head CT or MRI of a patient with AHEM may reveal focal hemorrhagic lesions, in addition to edema, petechial and perivascular hemorrhages, vascular destruction and fibrin deposition, and neutrophilic infiltration.

Convergence with other CNS demyelinating disorders and multiphasic presentation:

Other demyelinating disorders like MS, Optic neuritis(ON) and Neuromyelitis Optica Spectrum disorders can have overlaps in presentation as well as convergence with ADEM. This has been increasingly been recognized and considered in the diagnostic criteria for ADEM. There are multiphasic ADEM cases with an event of ADEM occurring more than 3 months following the initial ADEM diagnosis. [15]

Enhancing Healthcare Team Outcomes

The presentation, diagnosis, and management if ADEM is very complex and best done with a team that includes an infectious disease expert, emergency department physician, pathologist, nurse practitioner, neurologist, psychiatrist, and an intensivist.  ADEM is classically seen following an illness (or less frequently, a vaccination) with a lag time ranging from a few days to up to 60 days (mean is 26 days). Although in about 25% of affected individuals, there may not be an obvious preceding event. The onset of ADEM is acute and rapidly progressive, and it is characterized by multifocal neurologic symptoms that require early hospitalization. The decision to treat with an antiviral agent requires clinical judgment. ICU monitoring of these patients is required and nurses need to provide close monitoring and at the same time provide prophylaxis against DVT, pressure sores and stress ulcers. Any new neurological change must be reported to the team.

The pharmacist should provide medication reconciliation and assist with acyclovir and high-dose intravenous glucocorticoid therapy dosing. If a patient is not improving, the pharmacist may assist in correct dosing and monitoring of intravenous immune globulin (IVIG) or cyclophosphamide. The pharmacist can assist in educating the patient and family in regards to medication compliance.

There are rare cases of severe hemorrhagic necrosis leading to rapid progression and death, especially if affecting brainstem. Only through such an interprofessional team approach can the morbidity and mortality of this disorder be lowered.

The outlook of patients with ADEM is otherwise fair to good, but those who present with severe neurological deficits may have residual defects after recovery. The recovery period can take weeks or months. [10][16](Level V)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Acute Disseminated Encephalomyelitis (ADEM) - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is true about acute disseminated encephalomyelitis (ADEM)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old healthy woman suffers an upper respiratory infection with fever two weeks prior to developing a rapidly progressive weakness of all four extremities. By the time she presents for evaluation, she has begun to show signs of confusion and disorientation. Which of the following is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old female had a respiratory infection with fever and cough a couple of weeks ago. She develops neck stiffness, headache, recurrent fever, and then progressive cognitive dysfunction. She becomes lethargic, disoriented, and progressively unresponsive. MRI shows bilateral widespread white matter damage. What is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An 8-year-old male is brought in after a 2-week history of a URI but today he has fever, weakness, and ataxia. He is brought to the emergency department with a 2-minute episode of tonic-clonic seizure. MRI shows multifocal white matter lesions that are diffuse and enhance with contrast. Select the most probable diagnosis.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 16-year-old female presents to the hospital with high-grade fever and headache for the last 2 days. She has had an upper respiratory infection for the last 2 weeks as well. On examination, she has right-side weakness and numbness. MRI brain shows cortical and deep grey matter enhancing lesions. Lumbar puncture revealed lymphocytic pleocytosis without any oligoclonal bands. Which medication has been shown to shorten the duration of neurological symptoms and halt the progression of the disease?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Acute Disseminated Encephalomyelitis (ADEM) - References

References

Nishiyama M,Nagase H,Tomioka K,Tanaka T,Yamaguchi H,Ishida Y,Toyoshima D,Fujita K,Maruyama A,Sasaki K,Oyazato Y,Nakagawa T,Takami Y,Nozu K,Nishimura N,Nakashima I,Iijima K, Clinical time course of pediatric acute disseminated encephalomyelitis. Brain     [PubMed]
Essrani R,Essrani RK,Mehershahi S,Lohana AK,Sudhakaran A, Oculomotor Nerve Palsy After Influenza Vaccine in Inflammatory Bowel Disease. Cureus. 2018 Dec 21;     [PubMed]
Alves JM,Marques IB,Gil-Gouveia R, [Vaccination Controversies: An Adult Case of Post-Vaccinal Acute Disseminated Encephalomyelitis]. Acta medica portuguesa. 2019 Feb 1;     [PubMed]
Rossor T,Benetou C,Wright S,Duignan S,Lascelles K,Robinson R,Das K,Ciccarelli O,Wassmer E,Hemingway C,Lim M,Hacohen Y, Early predictors of epilepsy and subsequent relapse in children with acute disseminated encephalomyelitis. Multiple sclerosis (Houndmills, Basingstoke, England). 2019 Feb 7;     [PubMed]
Galetta KM,Bhattacharyya S, Multiple Sclerosis and Autoimmune Neurology of the Central Nervous System. The Medical clinics of North America. 2019 Mar;     [PubMed]
Torisu H,Okada K, Vaccination-associated acute disseminated encephalomyelitis. Vaccine. 2019 Feb 14;     [PubMed]
Kawanaka Y,Ando K,Ishikura R,Katsuura T,Wakata Y,Kodama H,Takaki H,Takada Y,Ono J,Yamakado K, Delayed appearance of transient hyperintensity foci on T1-weighted magnetic resonance imaging in acute disseminated encephalomyelitis. Japanese journal of radiology. 2019 Jan 22;     [PubMed]
Anand KS,Agrawal AK,Garg J,Dhamija RK,Mahajan RK, Spectrum of neurological complications in chikungunya fever: experience at a tertiary care centre and review of literature. Tropical doctor. 2019 Jan 24;     [PubMed]
Codjia P,Ayrignac X,Carra-Dalliere C,Cohen M,Charif M,Lippi A,Collongues N,Corti L,De Seze J,Lebrun C,Vukusic S,Durand-Dubief F,Labauge P, Multiple sclerosis with atypical MRI presentation: Results of a nationwide multicenter study in 57 consecutive cases. Multiple sclerosis and related disorders. 2019 Feb;     [PubMed]
Bhatt P,Bray L,Raju S,Dapaah-Siakwan F,Patel A,Chaudhari R,Donda K,Bhatt NS,Dave M,Linga VG,Lekshminarayanan A,Patel SV,Billimoria ZC,Zuckerman S,Yagnik P,Singh D, Temporal Trends of Pediatric Hospitalizations with Acute Disseminated Encephalomyelitis in the United States: An Analysis from 2006 to 2014 using National Inpatient Sample. The Journal of pediatrics. 2019 Mar;     [PubMed]
Yae Y,Kawano G,Yokochi T,Imagi T,Akita Y,Ohbu K,Matsuishi T, Fulminant acute disseminated encephalomyelitis in children. Brain     [PubMed]
Ramanathan S,Mohammad S,Tantsis E,Nguyen TK,Merheb V,Fung VSC,White OB,Broadley S,Lechner-Scott J,Vucic S,Henderson APD,Barnett MH,Reddel SW,Brilot F,Dale RC, Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. Journal of neurology, neurosurgery, and psychiatry. 2018 Feb;     [PubMed]
VAN BOGAERT L, Post-infectious encephalomyelitis and multiple sclerosis; the significance of perivenous encephalomyelitis. Journal of neuropathology and experimental neurology. 1950 Jul     [PubMed]
Young NP,Weinshenker BG,Parisi JE,Scheithauer B,Giannini C,Roemer SF,Thomsen KM,Mandrekar JN,Erickson BJ,Lucchinetti CF, Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain : a journal of neurology. 2010 Feb     [PubMed]
Mader I,Wolff M,Niemann G,Küker W, Acute haemorrhagic encephalomyelitis (AHEM): MRI findings. Neuropediatrics. 2004 Apr     [PubMed]
Pohl D,Alper G,Van Haren K,Kornberg AJ,Lucchinetti CF,Tenembaum S,Belman AL, Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome. Neurology. 2016 Aug 30;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.