Physiology, Central Venous Pressure


Article Author:
Parth Shah
Mary-Tiffany Oduah
Vivek Podder


Article Editor:
Martine Louis


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
8/18/2019 9:50:40 AM

Introduction

Central venous pressure, which is a measure of pressure in the vena cava, can be used as an estimation of preload and right atrial pressure. Central venous pressure is often used as an assessment of hemodynamic status, particularly in the intensive care unit. The central venous pressure can be measured using a central venous catheter advanced via the internal jugular vein and placed in the superior vena cava near the right atrium. A normal central venous pressure reading is between 8 to 12 mmHg. This value is altered by volume status and/or venous compliance.[1][2][3]

Issues of Concern

New evidence suggests no absolute direct correlation between central venous pressure (CVP) and the total blood volume present in the circulation. With the emergence of the concept of fluid responsiveness and its impact on patient outcome, CVP was found to be a poor predictor of fluid responsiveness. Accurate measurements of the central venous pressure were also challenged. A survey revealed that approximately 75% of the respondents made an error in their measurement of CVP. It also showed that many younger clinicians still use central venous pressure for management of cardiovascular cases despite the doubted accuracy of CVP; this emphasizes the need for proper education regarding central venous pressure [4][5][6]

A systematic review from 2008 has indicated insufficient data to support that central venous pressure should be monitored in intensive care units, operating rooms, and emergency departments. The review also suggested that central venous pressure should only be used as a measure of right ventricular function but not as a measure of volume status in certain patient populations i.e heart transplant patients, patients with right ventricular infarct, or acute pulmonary embolism. Of note, the Surviving Sepsis Campaign no longer targets a central venous pressure of 8 to 12 mmHg as a gauge of fluid resuscitation. Due to the limitation of the central venous pressure as a static measure, the critical care society realized that parameters such as lactate clearance would more dynamically and accurately attest to the adequacy of end-organ perfusion.

Organ Systems Involved

Several organ systems regulate the central venous pressure. The central venous pressure, which is a direct approximation of the right atrial pressure, is dependent on total blood volume and compliance of the central venous compartment. It is also influenced by a myriad of factors including cardiac output, orthostasis (changing from a standing position to supine), arterial dilation, and preload (which may be increased by abdominal muscle or limb contraction as well as renal failure resulting in fluid retention).

Mechanism

Early experimental studies explored various hemodynamic parameters including central venous pressure (CVP), venous return (VR) and cardiac output (CO) - their relationship is described by Starling's flow equation Q = ΔP/R, where Q represents flow, ΔP represents the pressure gradient, and R represents resistance. Guyton's law further explores this relationship with regard to cardiac performance.[7] 

In vivo, the CVP is a functional measure of right atrial and juxta-cardiac pressures (derived from pericardial and thoracic compartments) [7]

Theoretically, when the mean systemic filling pressure equals the central venous pressure, there will be no venous return. The CVP is inversely related to venous return. However, another factor to consider is intrathoracic pressure. If the central venous pressure were to fall below the intrathoracic pressure, the central veins become compressed and limit venous return. The peripheral venous pressure can be affected by a change in volume, and because of their compliant nature, a change in total volume would have a greater effect on the amount of blood present in the veins. Venous tone is regulated by the sympathetic nervous system as well as external compression forces. Under normal physiologic conditions, right and left ventricular output are equal.

The central venous pressure influences cardiac (left ventricle) output - this is driven by changes in central venous pressure which lead to changes in the filling pressures of the left heart. 

Related Testing

The central venous pressure is measured by a central venous catheter placed through either the subclavian or internal jugular veins. The central venous pressure can be monitored using a pressure transducer or amplifier. First, the transducer or amplifier must be zeroed to atmospheric pressure. Then, the transducer must be aligned to the horizontal plane of the tricuspid valve. The central venous pressure can also be measured using an ultrasound machine. The ultrasound can assess fluid responsiveness as measure the maximal inferior vena cava diameter, inferior vena cava inspiratory collapse, and internal jugular aspect ratio. Amongst these three, the measurement of the maximal inferior vena cava diameter was found to be the best estimate of the central venous pressure with an inferior vena cava diameter greater than 2 centimeters suggesting elevated central venous pressure and measurement less than 2 centimeters, suggesting low central venous pressure.

Pathophysiology

Low Central Venous Pressure

Some factors that can decrease central venous pressure are hypovolemia or venodilation. Either of these would decrease venous return and thus decrease the central venous pressure. A decrease in central venous pressure is noted when there is more than 10% of blood loss or shift of blood volume. A decrease in intrathoracic pressure caused by forced inspiration causes the vena cavae to collapse which decreases the venous return and, in turn, decreases the central venous pressure.

Elevated Central Venous Pressure

Elevated Central Venous Pressure can occur in heart failure due to decreased contractility, valve abnormalities, and dysrhythmias. Any patients on ventilator assistance that have excessive positive end-expiratory pressure would have an increase in pulmonary arterial resistance which causes an increase in central venous pressure. However, an increased central venous pressure caused by increased pulmonary arterial resistance can also be affected by a decrease in the fraction of inspired oxygen, an increase in ventilation/perfusion abnormalities in the lung, an increase in pericardial pressure, or an increase in intra-abdominal pressure which would increase thoracic pressure. Increased juxta-cardiac pressure - tension pneumothorax, pericardial tamponade, right ventricular infarct, right ventricular outflow obstruction - can also decrease venous return.[7]

Clinical Significance

Clinical utility of the central venous pressure can be seen in the assessment of cardiocirculatory status. Elevated CVP will present clinically as a pulsation of the internal jugular vein when a patient is inclined at 45 degrees; however, it can be noted in an upright patient in severe cases.

Elevated CVP is indicative of myocardial contractile dysfunction and/or fluid retention. On the other hand, low central venous pressure is indicative of volume depletion or decreased venous tone. The central venous pressure, despite its numerous limitations, is consistently used universally to guide fluid resuscitation. The Surviving Sepsis guidelines suggest targeting a central venous pressure between 8 and 12 mmHg during fluid resuscitation. [8][9]

The ease of determination of the central venous pressure makes it a clinically attractive, albeit non-specific, indicator of fluid status. As such, other indices, such as the inferior vena cava collapsibility index (IVC CI) must be used adjunctively for more accurate assessment of volume status [10]

In addition, CVP has been found to be inversely correlated with the tricuspid annular plane systolic excursion (TAPSE) in mechanically ventilated critically ill patients (with left ventricular ejection fraction (LVEF) less than 55%), thus TAPSE may be used as a surrogate marker of CVP [11].


  • Image 11326 Not availableImage 11326 Not available
    Image courtesy O.Chaigasame
Attributed To: Image courtesy O.Chaigasame

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Central Venous Pressure - Questions

Take a quiz of the questions on this article.

Take Quiz
What is a normal central venous pressure measured at the level of the sternum?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 79-year-old female patient is being evaluated in the intensive care unit for hypovolemia. A central venous line was placed in the right internal jugular vein following multiple attempts. Vital signs show blood pressure 90/70mmHg, heart rate 102 bpm, temperature 37.2 C. Cardiac auscultation is unremarkable. Her central venous pressure (CVP) measures 20 cm H2O. Which of the following is the most likely etiology?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Central venous pressure is reflective of:



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What does a measurement of central venous pressure reflect?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A post-surgical patient with a central venous line has a CVP reading of 2 cm H2O with a urine output of 15 cc per hour. Select the appropriate statement.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Central venous pressure elevation is a possible finding in which of the following conditions? Select all that apply.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Central Venous Pressure - References

References

Russell PS,Hong J,Windsor JA,Itkin M,Phillips ARJ, Renal Lymphatics: Anatomy, Physiology, and Clinical Implications. Frontiers in physiology. 2019;     [PubMed]
Hariri G,Joffre J,Leblanc G,Bonsey M,Lavillegrand JR,Urbina T,Guidet B,Maury E,Bakker J,Ait-Oufella H, Narrative review: clinical assessment of peripheral tissue perfusion in septic shock. Annals of intensive care. 2019 Mar 13;     [PubMed]
Martin GS,Bassett P, Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. Journal of critical care. 2019 Apr;     [PubMed]
Senthelal S,Maingi M, Physiology, Jugular Venous Pulsation 2019 Jan;     [PubMed]
Wolfe HA,Mack EH, Making care better in the pediatric intensive care unit. Translational pediatrics. 2018 Oct;     [PubMed]
Campos Munoz A,Gupta M, Orthostasis 2019 Jan;     [PubMed]
Behem CR,Gräßler MF,Trepte CJC, [Central venous pressure in liver surgery : A primary therapeutic goal or a hemodynamic tessera?] Der Anaesthesist. 2018 Oct;     [PubMed]
Aref A,Zayan T,Sharma A,Halawa A, Utility of central venous pressure measurement in renal transplantation: Is it evidence based? World journal of transplantation. 2018 Jun 28;     [PubMed]
Berlin DA,Bakker J, Starling curves and central venous pressure. Critical care (London, England). 2015 Feb 16     [PubMed]
Govender J,Postma I,Wood D,Sibanda W, Is there an association between central venous pressure measurement and ultrasound assessment of the inferior vena cava? African journal of emergency medicine : Revue africaine de la medecine d'urgence. 2018 Sep     [PubMed]
Zhang H,Wang X,Chen X,Zhang Q,Liu D, Tricuspid annular plane systolic excursion and central venous pressure in mechanically ventilated critically ill patients. Cardiovascular ultrasound. 2018 Aug 7     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.