Beta 2 Agonists

Article Author:
Eric Hsu

Article Editor:
Tushar Bajaj

Editors In Chief:
Kranthi Sitammagari
Mayank Singhal

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon

6/14/2019 9:27:44 PM


Beta-2 adrenergic agonists are a drug class used as mainstay treatments for respiratory diseases such as bronchial asthma and chronic obstructive pulmonary disease (COPD). They replicate the functions of catecholamines such as epinephrine, norepinephrine, and dopamine in producing different autonomic responses within the body. Specifically, the smooth muscle of the airway, uterus, intestine, and systemic vasculature are areas where beta-2 agonists have the greatest effect. Thus, the focus of development for this drug class has been mostly on the clinical implications involving their ability to affect those target organ systems. Within the last century, there has been extensive research on the bronchodilatory as well as the anti-bronchoconstrictive properties of these drugs.

The early 1900s marked the advent of epinephrine as a form of treatment in Western medicine after successfully obtaining it from the adrenal gland; this became the treatment for asthmatic patients until its replacement in the 1940s with the formulation of isoproterenol, a non-selective beta-adrenoreceptor agonist. However, the adverse side effects of isoproterenol became an issue of concern, and the search continued for a treatment with a better side effect profile. With the discovery of the alpha-1, alpha-2, beta-1, beta-2 receptors in subsequent years, it became known that airway bronchodilation had a strong correlation specifically with beta-2 receptors in the lung vasculature. Pharmacological pursuits turned towards maximizing the selectivity towards the beta-2 receptor in an attempt to reduce the incidence of adverse side effects of the non-selective isoproterenol. These new drugs, classified as beta-2 adrenergic receptor agonists, have since become frontline treatments for bronchial asthma and chronic obstructive pulmonary disease (COPD). Subsequent research continues to aim at improving the efficacy, minimizing adverse effects, with the goal to decrease symptoms, mortality rates, and improve patient quality of life.[1] However, since the discovery of beta-2 agonists, there have been many discussions regarding the potential long-term risks versus benefits to the overall rate of morbidity and mortality. This article aims to provide a foundational background of the mechanism of action of beta-2 agonist, the various classifications and their associated clinical significance as well as discuss areas of concern and speculations regarding this class of medications.


Mechanism of action:

Circulating catecholamines activate adrenergic receptors as part of our functional autonomic system to produce parasympathetic and sympathetic physiological responses. Mimicking catecholamines, beta-2 agonists act as ligands to adrenergic receptors with increased selectivity towards beta-2 adrenergic receptors. The activation of the beta-2 adrenergic receptor initiates a transmembrane signal cascade which involves the heterotrimeric G protein, Gs, and the effector, adenylyl cyclase. Adenylyl cyclase then increases intracellular cAMP via the hydrolysis of ATP. The elevated cAMP concentration serves to activate cAMP-dependent protein kinase A (PKA). PKA can phosphorylate intracellular substrates, which modulate various effects within the cell. Specifically, in airway smooth muscle, PKA acts to phosphorylate Gq-coupled receptors leading to a cascade of intracellular signals which have been proposed to reduce intracellular Ca2+ or decrease the sensitivity of Ca2+.[1] The change in Ca2+ results in the inhibition of myosin light chain phosphorylation, subsequently preventing airway smooth muscle contraction. This action is the underlying mechanism behind beta-2 agonists, which promotes the bronchodilatory effects used to treat many common respiratory diseases. There have been proposals that beta-2 agonists also provide anti-inflammatory effects within the airway smooth muscle through the reduction of intercellular adhesion molecule-1, the reduction of granulocyte-macrophage colony-stimulating factors release, stabilization of mast cell degranulation, and through the inhibition of multiple inflammatory pathways.[2]


Their onset of action and duration determines the classification of beta-2 agonists. The classes separate into short-acting beta agonists (SABAs), long-acting beta agonists (LABAs), and most recently, ultra-long-acting beta agonists (ultra-LABAs). As the names suggest, SABAs have the shortest half-life and are for immediate symptomatic relief. LABAs, along with ultra-LABAs, provide prolonged, sustained treatment due to their increased half-life. The different properties between these classes occur through modifications of the molecular structure of the drugs. For example, the prolonged duration is achievable by decreasing the susceptibility of the beta-2 agonists to catechol O-methyl transferase (COMT) and monoxidase enzymes that induce oxidative deamination and methylation, thereby inactivating the beta-2 agonist.


SABAs are the first-line medications for acute treatment in asthma symptoms and exacerbations. They are also commonly used in conjunction with LABAs, inhaled corticosteroids, or long-acting muscarinic agonists in treatment for COPD. Typical administration of these agents is as inhaled substances via metered dosing or dry powder inhalation. Compared to the alternative oral administration, inhalation has an increase in therapeutic value, as well as a decrease in systemic side effects.[2] The hallmark SABA is the drug salbutamol, which has an onset of action of under 5 minutes, and a therapeutic effect duration between 3 to 6 hours. While most commonly used as airway treatment, nebulized albuterol is also useful as a treatment for hyperkalemia by providing a rapid shift of intracellular potassium.[3] Terbutaline is a commonly used short-acting beta-2 agonist as a tocolytic in the cessation of labor contractions.

 Common SABAs:

  • Salbutamol (albuterol)
  • Terbutaline
  • Levalbuterol
  • Pirbuterol


LABAs are used in treatment for patients with asthma and COPD as well, often in conjunction with inhaled corticosteroids given there is evidence of greater efficacy with dual therapy versus monotherapy LABA.[4] They have an onset of duration greater than 5 minutes compared to the SABAs, with up to 15 minutes for salmeterol, and duration of effect for at least 12 hours. Similar to SABAs, the recommended route of administration for LABAs is through inhalation. LABAs are generally added on as second-line treatment in asthma that has failed symptomatic relief with SABAs and ICS. However, there is current controversy on the use of LABA as monotherapy versus dual therapy with ICS, as will be discussed in the topics further below.

Common LABAs:

  • Salmeterol
  • Formoterol


Ultra-LABAs have the greatest duration of effect, up to 24 hours, and they have the additional benefit of being a once a day treatment dosage. Indacaterol has been FDA approved as maintenance treatments for patients with COPD in combination with other bronchodilators. Indacaterol administration is as a dry powder with an onset of action around 5 minutes. Many other ultra-LABAs are currently undergoing research as well, with the potential to provide improvement to compliance and convenience compared to the current options of asthma and COPD treatments.[5]

Common ultra-LABAS:

  • Indacaterol
  • Olodaerol
  • Vilanterol 
  • Formoterol


The major routes of administration for beta-2 agonists include metered dosed-inhalers, nebulizers, dry powder inhalers, orally, subcutaneously, or intravenously. The preferred route of administration for beta-2 agonists in the treatment of asthma and COPD is through inhalation. Inhalation localizes the drug to the lung tissue, concentrating the therapeutic effect to the airway smooth muscles while minimizing the distribution of the drug to the systemic circulation. There has been no correlation between the therapeutic effect of inhaled beta-2 agonists and the peak plasma levels of the beta-2 agonist.[6] Less frequently, beta-2 agonists are given orally, which have been shown to cause an increase in systemic side effects. The tocolytic terbutaline can also be given IV, IM, or orally.

Issues of Concern

Adverse effects:

Adverse effects of beta-2 agonists most commonly involve the desensitization of the beta-2 adrenergic receptor to the beta-2 agonist. Due to the similar properties between the classes of adrenergic receptors, beta-2 agonists can create an “off-target” effect in stimulating either alpha-1, alpha-2, or beta-1 receptors.[7] Most common side effects of beta-2 agonists involve the cardiac, metabolic, or musculoskeletal system.  

Due to the vasodilatory effect of peripheral vasculature and subsequent decrease in cardiac venous return, compensatory mechanisms manifest as tachycardia are relatively common, especially within the first weeks of usage. Cardiac toxicity in the form of arrhythmias, cardiomyopathy, and ischemia have been correlated more strongly with older generation beta-2 agonists according to multiple reports ranging from single case reports to case-control studies.[8]

Arrhythmias are seen more commonly in fenoterol usage versus albuterol, and arrhythmias have an increase in frequency in patients with underlying heart disease or concomitant theophylline use.[9] Beta-2 agonists have been shown to decrease serum potassium levels via an inward shift of potassium into the cells due to an effect on the membrane-bound Na/K-ATPase, which can potentially result in hypokalemia. Beta-2 agonists also promote glycogenolysis, which can lead to inadvertent elevations in serum glucose. Musculoskeletal tremors are a potential side-effect as well, found more commonly with the use of oral beta-2 agonists.

The degree of which these adverse effects precipitate is generally associated with factors such as the selectivity ability of each beta-2 agonist to its respective receptor and the medication dosages. Several studies have also indicated hypoxemia and hypercapnia as exacerbating factors to the cardiotoxic effects of beta-2 agonists.[7]


Desensitization of the beta-2 agonist receptor due to prolonged stimulation from agonists can lead to tolerance. Tolerance involves the blunting of both the bronchodilatory and the anti-bronchoconstrictor effects of beta-2 agonists.[10] Multiple studies have reproduced a reduction in anti-bronchoconstriction from extended use of salbutamol after clinical induction of airway constriction with a methacholine test.[11] However, clinical implications of tolerance in affecting the management of treatment are still under investigation. Theoretically, LABAs should result in increased tolerance compared to SABAs due to the continuous beta receptor stimulation produced from their prolonged duration of action. However, this remains a topic of speculation, as studies have shown varying degrees of tolerance between both SABAs and LABAs.[12][13]  Research has also suggested multiple external factors as influences of the degree of beta-2 agonist tolerance, including genetic polymorphisms of the beta-2 receptor, the degree of airway inflammation, and the route of medication delivery.[14]

Clinical Significance

Asthma and COPD are currently amongst the most prevalent respiratory diseases in the population. In a randomized study in Italy involving 3000 subjects on the prevalence of asthma and COPD, the study concluded one in eight adults age greater than 20 years old were affected by either asthma, COPD, or the co-existence of both diseases.[15] Treatment and management begin with understanding the symptoms, confirmatory diagnostic tests, and proper assessment of the severity of the conditions. Beta-2 agonists are an integral part of the frontline management for symptomatic control, prevention of exacerbations, and improving quality of life. The National Asthma Education and Protection Program has integrated a step-wise approach to the treatment of bronchial asthma with SABAs as the first line for mild acute episodes. Stratification on the severity of asthma has its basis on the frequency of daytime and nighttime symptoms, the degree of interference to normal activity, and the lung function measured by the forced expiratory volume (FEV1) and FEV1/forced vital capacity (FVC). A moderate or severe persistent asthma warrants additional therapy in the form of inhaled corticosteroids followed by LABAs. Additional respiratory therapies are a consideration if symptoms persist or worsen. Similarly, the Global Initiative for COPD (GOLD) guidelines outline a systematic approach to treating COPD involving an assessment on the severity of symptoms, the risk factors for future exacerbations, and the overall lung function. Beta-2 agonists are once again at the forefront of treatment options. In the case of COPD management per GOLD guidelines, anticholinergics are also often added on early along with beta-2 agonists and inhaled corticosteroids.[16]

Other Issues

Within the last few decades, the benefits of beta-2 agonists on the overall effect against mortality and morbidity have been a widely debated topic of discussion. While LABAs have been proven to improve pulmonary function, provide symptomatic relief, and improve quality of life,[17] there has been data suggesting the chronic use of LABAs as a monotherapy approach has led to an overall increase in severe asthma incidences leading up to hospitalization, intubation, or even mortality.[18] Subsequent studies were performed using dual therapy of LABAs and ICS as a treatment for asthma, and, compared to monotherapy, there was a decrease in the incidence of severe asthma exacerbations.[4] Current literature continues to support the safety of dual therapy versus monotherapy. In 2017, the FDA approved of the safety of dual therapy in asthmatic patients while warning against the use of monotherapy of LABAs. The Global Initiative for COPD and National Asthma Education and Prevention as well as many other guidelines which are in agreement of dual therapy to treat cases of asthma uncontrolled with SABA.  Despite the support, it is still unclear on whether dual therapy can provide complete protection against the risk of asthma exacerbations that has been associated with single LABA treatment.

The topic of SABA overuse in previously clinically stable COPD patients is a point of discussion as studies have demonstrated without conclusive evidence a worsening of disease severity in this setting. An increase in airway hyperreactivity seems to occur with frequent, consistent usage of SABAs, which potentially lead to paradoxical airway narrowing.[7]  SABA overuse is relatively prevalent in the population of asthma and COPD patients. In a study on COPD patients currently on treatment, 19% were overusing SABAs, and a separate study on asthmatic patients showed 15.8% overuse of SABAs. In the case of COPD patients, there was an association with increased dyspnea and worsening of quality of life.[19] However, further investigation is necessary before making a definitive statement.

Enhancing Healthcare Team Outcomes

Given that most patients will be on lifetime treatment for COPD and severe asthma, managing the treatment with beta-2 agonists in the context of the National Asthma Education and Prevention and GOLD guidelines respectively require a patient-centered approach involving coordination between multidisciplinary systems. At the level of primary care, studies have shown improvement in the quality of diagnostic and guideline-oriented therapy approach in settings with a designated respiratory care specialist. Patient outcomes improved under more focused care in terms of overall decreases in symptoms and decreases in the usage of rescue inhalers. Patients also demonstrated proper inhaler technique more frequently compared to facilities without a respiratory care specialist, and the use of spirometry as a means of diagnosis was greater.[20] [Level III]

Patients are often from the geriatric population, and coordination between the provider and a nursing home or community center is required to ensure medication compliance and adequate outpatient care, particularly in patients with multiple disabilities. Pulmonary rehabilitation, to regain lost strength and endurance as well as become reintegrated into the community, have shown improvements to the overall patient quality of life. This approach involves proper patient education on coping mechanisms for exacerbations or dyspnea to minimize emotional stress, on proper breathing techniques, the importance of pacing and life modifications, as well as muscle training. Communication with the patient on correct inhalation techniques, signs of adverse side effects, and lifestyle modifications, including the cessation of smoking can improve patient outcomes as well (Evidence level III).[20] Consultation with a pulmonologist and respiratory therapist are often involved in the medical management of the patient, especially in patients with multiple comorbidities.

Beta-2 agonist therapy requires an interprofessional team approach, including physicians, specialists, specialty-trained nurses, respiratory therapists, and pharmacists, all collaborating across disciplines to achieve optimal patient results. [Level V]

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Beta 2 Agonists - Questions

Take a quiz of the questions on this article.

Take Quiz
A 16-year-old girl is brought by her mother for follow up. During her last visit, she was diagnosed with asthma and was prescribed some medications. Currently, her shortness of breath has resolved and her chest appears to be normal on physical examination. However, on further inquiry, the patient states, "Recently my pulse has been racing and I am having difficulty sleeping." Her CBC and thyroid function tests are within normal limits. Which of the following medications would most likely cause these symptoms?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A patient with COPD is currently managed on albuterol, tiotropium, and salmeterol. In what way would you expect his current medications to affect his serum potassium levels?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 30-year-old male with asthma diagnosed 1 week ago currently on albuterol inhaler presents to the clinic for follow up. The patient reports asthma is controlled, the last use of inhaler was 1 hour ago. The patient has no further concerns and is not on any medications. Vitals were unremarkable except for a heart rate of 110. The patient is comfortable in no acute distress. The remaining physical exam was negative. What is the most likely mechanism behind his elevated heart rate?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 16-year-old patient presents to the clinic complaining of wheezing and rhonchi. Her vital signs are unremarkable. Chest x-ray is negative for infiltrate, consolidation, or foreign objects. What is the mechanism of action behind the next best course of action?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 22-year-old patient presents to the ED with heart rate 110bpm, respiratory rate 22/min, O2 saturation of 95% on room air with increased work of breathing and audible wheezing but able to talk in phrases and sentences. Of the following choices below, what treatment would provide the greatest benefit to the patient given in the first hour since the symptoms?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A patient presents with wheezing and rhonchi. Her vital signs are normal and a chest x-ray shows no infiltrate. What is the next step in management?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Beta 2 Agonists - References


Billington CK,Ojo OO,Penn RB,Ito S, cAMP regulation of airway smooth muscle function. Pulmonary pharmacology     [PubMed]
Rodrigo GJ,Price D,Anzueto A,Singh D,Altman P,Bader G,Patalano F,Fogel R,Kostikas K, LABA/LAMA combinations versus LAMA monotherapy or LABA/ICS in COPD: a systematic review and meta-analysis. International journal of chronic obstructive pulmonary disease. 2017;     [PubMed]
Cazzola M,Calzetta L,Matera MG, β(2) -adrenoceptor agonists: current and future direction. British journal of pharmacology. 2011 May;     [PubMed]
Matera MG,Rinaldi B,Page C,Rogliani P,Cazzola M, Pharmacokinetic considerations concerning the use of bronchodilators in the treatment of chronic obstructive pulmonary disease. Expert opinion on drug metabolism     [PubMed]
Sears MR, Adverse effects of beta-agonists. The Journal of allergy and clinical immunology. 2002 Dec;     [PubMed]
Barisione G,Baroffio M,Crimi E,Brusasco V, Beta-Adrenergic Agonists. Pharmaceuticals (Basel, Switzerland). 2010 Mar 30;     [PubMed]
Poukkula A,Korhonen UR,Huikuri H,Linnaluoto M, Theophylline and salbutamol in combination in patients with obstructive pulmonary disease and concurrent heart disease: effect on cardiac arrhythmias. Journal of internal medicine. 1989 Oct;     [PubMed]
Salpeter SR,Ormiston TM,Salpeter EE, Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. Chest. 2004 Jun;     [PubMed]
Grove A,Lipworth BJ, Tolerance with beta 2-adrenoceptor agonists: time for reappraisal. British journal of clinical pharmacology. 1995 Feb;     [PubMed]
Pauwels RA,Löfdahl CG,Postma DS,Tattersfield AE,O'Byrne P,Barnes PJ,Ullman A, Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. The New England journal of medicine. 1997 Nov 13;     [PubMed]
Lanes SF,Lanza LL,Wentworth CE 3rd, Risk of emergency care, hospitalization, and ICU stays for acute asthma among recipients of salmeterol. American journal of respiratory and critical care medicine. 1998 Sep;     [PubMed]
Haney S,Hancox RJ, Rapid onset of tolerance to beta-agonist bronchodilation. Respiratory medicine. 2005 May;     [PubMed]
Israel E,Drazen JM,Liggett SB,Boushey HA,Cherniack RM,Chinchilli VM,Cooper DM,Fahy JV,Fish JE,Ford JG,Kraft M,Kunselman S,Lazarus SC,Lemanske RF,Martin RJ,McLean DE,Peters SP,Silverman EK,Sorkness CA,Szefler SJ,Weiss ST,Yandava CN, The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. American journal of respiratory and critical care medicine. 2000 Jul;     [PubMed]
de Marco R,Pesce G,Marcon A,Accordini S,Antonicelli L,Bugiani M,Casali L,Ferrari M,Nicolini G,Panico MG,Pirina P,Zanolin ME,Cerveri I,Verlato G, The coexistence of asthma and chronic obstructive pulmonary disease (COPD): prevalence and risk factors in young, middle-aged and elderly people from the general population. PloS one. 2013;     [PubMed]
Figueira Gonçalves JM,García Bello MÁ,Martín Martínez MD,Pérez Méndez LI,García-Talavera I,García Hernández S,Díaz Pérez D,Bethencourt Martín N, The COPD Comorbidome in the Light of the Degree of Dyspnea and Risk of Exacerbation. COPD. 2019 Apr 29;     [PubMed]
Effa E,Webster A, Pharmacological interventions for the management of acute hyperkalaemia in adults. Nephrology (Carlton, Vic.). 2017 Jan;     [PubMed]
Twentyman OP,Higenbottam TW, Controversies in respiratory medicine: regular inhaled beta-agonists--clear clinical benefit or a hazard to health? (1). Beta-agonists can be used safely and beneficially in asthma. Respiratory medicine. 1992 Nov;     [PubMed]
Cheung D,Timmers MC,Zwinderman AH,Bel EH,Dijkman JH,Sterk PJ, Long-term effects of a long-acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. The New England journal of medicine. 1992 Oct 22;     [PubMed]
Fan VS,Gylys-Colwell I,Locke E,Sumino K,Nguyen HQ,Thomas RM,Magzamen S, Overuse of short-acting beta-agonist bronchodilators in COPD during periods of clinical stability. Respiratory medicine. 2016 Jul;     [PubMed]
Hart MK,Millard MW, Approaches to chronic disease management for asthma and chronic obstructive pulmonary disease: strategies through the continuum of care. Proceedings (Baylor University. Medical Center). 2010 Jul;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.