Antimalarial Medications


Article Author:
Stephen Hill


Article Editor:
Gyanendra Sharma


Editors In Chief:
Kranthi Sitammagari
Mayank Singhal


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
12/2/2018 12:42:44 PM

Indications

When treating patients who are suspected to have malaria, it is important that treatment is not initiated until the diagnosis of malaria has been established. To guide malaria treatment appropriately, it is important to identify three factors: (1) the infecting Plasmodium species, (2) the clinical status of the patient, and (3) the drug susceptibility of the infecting parasites (the geographic area from where the infection was acquired from and any previous antimalarial medications). The obvious exception in waiting for confirmation to treat suspected malaria is if the patient shows signs of severe malaria and clinical suspicion for malaria is high.[1][2][3]

By identifying the infecting Plasmodium species, the healthcare practitioner can identify which infections will progress to severe manifestations and which will not. Also, some infections can remain dormant in the liver as hypnozoites and can lead to a relapse. The clinical status of a patient can be categorized into two main categories: uncomplicated malaria or severe malaria. The main difference in treatment is that uncomplicated malaria is treated with oral antimalarials, while severe malaria is treated with parenteral antimalarials. Last, by determining the drug susceptibility of the infecting Plasmodium species, healthcare practitioners can select an appropriate treatment course. Practitioners can do this by looking at where the patient was when they acquired the infection and if they have received any previous treatment with antimalarials.

Mechanism of Action

Chloroquine phosphate is the preferred agent if the infection is considered uncomplicated and is caused by chloroquine sensitive P.falciparum and works by inhibiting parasite growth by concentrating within the parasite acid vesicles thereby raising internal pH. Hydroxychloroquine is also an acceptable first-line treatment of chloroquine-sensitive P. falciparum and has a similar mechanism of action as chloroquine phosphate.[4][5]

Primaquine phosphate is utilized as an add-on agent to either chloroquine phosphate or hydroxychloroquine when infections are caused by P. vivax or P. ovale with chloroquine sensitivity. This medication works by eliminating the hypnozoites that remain dormant in the patient’s liver, which reduces the risk of relapse in a patient.

Atovaquone-proguanil is utilized in infections caused by P. falciparum with chloroquine resistance. This combination product acts as an antimalarial as atovaquone selectively inhibits parasite mitochondrial electron transport and proguanil inhibits dihydrofolate reductase disrupting deoxythymidylate synthesis.

Artemether-lumefantrine is an alternative first-line option for the treatment of malaria caused by chloroquine-resistant P. falciparum. The proposed mechanism of action for both agents is to inhibit nucleic acid and protein synthesis.  

Quinine sulfate plus doxycycline, tetracycline, or clindamycin can be used as a second-line option for the treatment of malaria caused by chloroquine-resistant P. falciparum. Quinine intercalates into DNA, disrupting the parasites replication and transcription to exert its antimalarial effects.

For the treatment of uncomplicated chloroquine-resistant P. vivax, there are three options considered to have equal efficacy.

  • Quinine sulfate plus doxycycline or tetracycline plus primaquine phosphate

  • Atovaquone-proguanil plus primaquine phosphate

  • Mefloquine plus primaquine phosphate

    • Mefloquine’s antimalarial effects are similar to quinine sulfate’s effects listed above.

Quinidine gluconate is the drug of choice for suspected severe malaria because it is the only parenterally available antimalarial drug. Severe malaria is characterized by the presence of parasites in the blood and any of the following conditions: altered mental status, seizures, respiratory distress, circulatory collapse, renal failure, anemia, thrombocytopenia, liver failure, and acidosis. The most common causative agent of severe malaria is P. falciparum. Quinidine gluconate acts primarily as an intraerythrocytic schizonticide, with little effect upon sporozoites or upon pre-erythrocytic parasites. Quinidine is gametocidal to P. vivax and P. malariae, but not to P. falciparum. Clindamycin, doxycycline, or tetracycline should be added to quinidine therapy when treating severe malaria in either IV or oral form, depending on the patient's clinical condition.

Administration

Chloroquine phosphate dosing for chloroquine-sensitive P. falciparum is 1000 mg by mouth immediately, followed by 500 mg by mouth at hours 6, 24, and 48 hours. An alternative in chloroquine-sensitive infections is to use Hydroxychloroquine 800 mg by mouth immediately, followed by 400 mg by orally at hours 6, 24, 48 hours. Other malaria infections that would follow the same protocol would be P. malariae or P. knowlesi.

Primaquine phosphate 26.3 mg is added to the above therapy at a dose of two tablets by mouth once a day for 14 days for chloroquine-sensitive P. vivax or P. ovale infections. Primaquine should be given with meals to decrease GI adverse effects (abdominal cramps, nausea, vomiting). If the patient vomits within 30 minutes of taking a dose, then they should repeat the dose.

Atovaquone-proguanil 250 mg/100 mg dosing is administered as four tablets once a day for three days. The other first-line treatment for malaria caused by chloroquine-resistant P. falciparum is artemether-lumefantrine 20 mg/120 mg dosed as four tablets immediately and at 8 hours, followed by four tablets twice daily on days 2 and 3. It should be taken with a meal or a milky drink to increase absorption as the rate of absorption of atovaquone is dependent on the amount administered with dietary fat.

When treating chloroquine-resistant P. vivax or P. falciparumuinine, sulfate is given as 650 mg by mouth three times a day for 3 or 7 days with the 7-day regimen used for infections acquired in Southeast Asia.  The addition of doxycycline, tetracycline, and clindamycin is given as a 7-day course as well.

Mefloquine is administered as 750 mg by initial mouth dose followed by 500 mg by mouth, given 6 to 12 hours after the initial dose. Mefloquine should be administered with food and at least 8 ounces of water. If vomiting occurs within 30 minutes after the dose, an additional full dose should be given; if it occurs within 30 to 60 minutes after the dose, an additional half-dose should be given. This agent can be used as a third-line option for the treatment of malaria caused by chloroquine-resistant P. falciparum or a first line option for the treatment of uncomplicated chloroquine-resistant P. vivax.

Quinine gluconate, used as the only IV option for severe malaria treatment is given as a loading dose of 10mg/kg IV over one to two hours followed by a continuous infusion of 0.02 mg/kg/minute for at least 24 hours. Patients may alternatively receive a 24 mg/kg loading dose infused over four hours followed by 12 mg/kg over four hours dosed every eight hours. IV quinidine should be continued until the parasite density is less than 1% and the patient can tolerate oral medications. Once IV quinine is discontinued, the patient should be switched to oral quinine for the remainder of treatment. Renal adjustments do not need to be made when calculating loading doses of IV quinidine gluconate. If a patient has a creatinine clearance less than or equal to 1 mL/minute, the maintenance dose should be reduced by 25%. The addition of doxycycline, tetracycline, or clindamycin to intravenous (IV)  quinidine is given as a 7-day course as well.

Adverse Effects

Many patients will experience gastrointestinal upset (GI), headache, blurred vision, and insomnia when taking chloroquine. It rarely has been shown to cause QT interval prolongation. It should be used with caution in patients with a previous history of GI disorders, conduction abnormalities, or patients taking QT-prolonging drugs.  Side effects of hydroxychloroquine are similar to chloroquine although hydroxychloroquine is most commonly used as an alternative for patients who cannot tolerate the GI side effects of chloroquine. Both of these drugs have been reported to cause psoriatic exacerbations.[6][7][8]

Primaquine is known to cause hemolytic anemia in patients with G6PD deficiency. A G6PD level should be taken before administration of primaquine to determine if the patient can receive this medication. The common side effect of primaquine is mainly limited to GI disturbances such as abdominal pain, nausea, and vomiting.

Common side effects of atovaquone-proguanil are abdominal pain, nausea, vomiting, headache, and increased serum transaminases (AST/ALT). Vomiting is of particular note because absorption may be decreased in patients with diarrhea or vomiting. Healthcare providers should consider the use of an antiemetic in patients with vomiting or diarrhea that may impact the absorption of their medication. Atovaquone-proguanil may also enhance the anticoagulant effect of warfarin. Patients taking both medications should be monitored closely for increased bleeding episodes.

The most common side effects of artemether-lumefantrine include a headache, fever, dizziness, fatigue, nausea and vomiting, and anorexia. Of note, for this medication, muscular effects are common and usually manifest as weakness and/or myalgia. The most serious side effect associated with this agent is QT prolongation, especially in concomitant use with other medications that can prolong the QT interval.

Doxycycline and tetracycline are usually well tolerated, but some GI upset can be seen and, less commonly, ultraviolet photosensitivity. Patients should apply sunscreen liberally to avoid the photosensitivity. Patients also may have a side effect of Candida vaginitis, so it is recommended to offer women antifungal self-treatment for management. Clindamycin most commonly causes GI disturbances, most notably diarrhea, and is the most common antibiotic associated with C. difficileFq infections post-treatment.

Mefloquine side effects to be aware of are GI upset, lightheadedness, headache, difficulty concentrating, mood swings, and strange dreams. A US box warning is that mefloquine can cause neuropsychiatric effects even after discontinuation. Symptoms to monitor include anxiety, depression, nightmares, hallucinations, dizziness, and paranoia. Severe neuropsychiatric reactions involve seizures, suicidal ideation, and psychosis.

A baseline EKG is recommended before using quinidine gluconate or oral quinine due to their potential to cause QTc prolongation. Once quinidine is initiated, continuous telemetry monitoring is recommended. A patient’s infusion should be stopped or slowed if any of the following occur: an increase in the QRS complex by more than 50%, increase in QTc interval by more than 0.6 seconds, QTc prolongation of more than 25% from baseline, or hypotension that is unresponsive to fluid challenge. Other serious side effects associated with quinine and quinidine include central nervous system disturbances such as dizziness, confusion, and headache as well as serious skin conditions from bullous dermatitis to Steven-Johnson syndrome and toxic epidermal necrolysis.

Contraindications

Chloroquine and hydroxychloroquine have few contraindications. Either a previous hypersensitivity to any 4-aminoquinoline compounds or the underlying presence of retinopathy are the only absolute exclusions to these medications. Patients also should be tested for a G6PD deficiency before starting chloroquine or hydroxychloroquine. Patients with a G6PD deficiency are at increased risk for hemolysis when given these drugs. Both chloroquine and hydroxychloroquine are safe to use throughout pregnancy.

Primaquine is contraindicated in pregnancy and breastfeeding as well as in patients with severe G6PD deficiency and acutely ill patients with a tendency to develop granulocytopenia (rheumatoid arthritis, SLE, etc.).  Use also is strongly discouraged in conjunction with medications that can cause hemolytic anemia or myeloid bone marrow suppression.

Atovaquone-proguanil is not intended for use in patients less than 5 kg or women who are pregnant or breastfeeding. It should not be used in patients with severe renal impairment (CrCl < 30 mL/min) because proguanil is excreted in the urine.

Artemether-lumefantrine is contraindicated only if a patient has a previous hypersensitivity reaction to either medication or in the concurrent use with strong CYP3A4 inducers such as rifampin, carbamazepine, or phenytoin.  

Contraindications for doxycycline and tetracycline include pregnant women, children less than eight years of age, or previous hypersensitivity to any of the tetracycline antibiotics. Clindamycin’s only true contraindications are a previous history of hypersensitivity reactions to it or lincomycin and to avoid use when less toxic antibiotics are appropriate due to the increased risk of severe and possibly fatal colitis.

Contraindications for mefloquine use include known hypersensitivity to the drug, history of seizures or major psychiatric disorder, and a recent history of depression or anxiety. Mefloquine has been associated with sinus bradycardia and QT interval prolongations. It should be used with caution in patients with cardiac conduction disorders or using antiarrhythmic agents. Mefloquine can be safely administered during all trimesters of pregnancy.

Contraindications for both quinine and quinidine include thrombocytopenia, thrombocytopenic purpura, myasthenia gravis, any heart block greater than first degree, QT prolongation, or in combination with medications that can also cause QT prolongation.  

Enhancing Healthcare Team Outcomes

Because of mass migration, malaria cases are now being diagnosed in the USA. Malaria can have a diverse presentation and it is important to be aware of this diagnosis when evaluating a patient with a fever or a traveler from the tropics. Healthcare workers including nurse practitioners need to know the basic features about the antimalarial medications and parameters to monitor, as these drugs do have potent adverse effects. G6PD screening is recommended if the patient will be started on chloroquine, hydroxychloroquine, and primaquine. If the patient has known mild to moderate G6PD deficiency or unknown status and is placed on any of these three medications, then it is recommended to obtain a baseline CBC as well as a CBC at day 3 and day 8 of therapy.  

A baseline ECG is recommended with primaquine, artemether-lumefantrine, mefloquine, quinine, and quinidine. Continuous telemetry monitoring for hypotension and cardiac conduction changes is recommended while patients are on IV quinidine. Also, periodic blood glucose monitoring to check for hypoglycemia should be performed while on IV therapy.

A negative pregnancy test for women of childbearing age should be performed prior to starting primaquine.

Nurses and pharmacists should assist the team in educating the patient and family in regards to the safe use of these medications.

An infectious disease expert should always be consulted when dealing with a patient with malaria because of drug resistance and constant changes in the drugs recommended.[9][10]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Antimalarial Medications - Questions

Take a quiz of the questions on this article.

Take Quiz
The majority of antimalarials are known to cause which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not a factor when determining the treatment of mild to moderate severity malaria?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is considered first-line treatment for chloroquine-resistant Plasmodium falciparum?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A G6PD level should be checked prior to starting which medication?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is an intravenous medication for severe malaria and what is the loading dose?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following needs to be done before starting a regimen of antimalarial medication?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the drug of choice for intravenous treatment of severe malaria?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Antimalarial Medications - References

References

Marealle AI,Mbwambo DP,Mikomangwa WP,Kilonzi M,Mlyuka HJ,Mutagonda RF, A decade since sulfonamide-based anti-malarial medicines were limited for intermittent preventive treatment of malaria among pregnant women in Tanzania. Malaria journal. 2018 Nov 6     [PubMed]
Nahhas AF,Braunberger TL,Hamzavi IH, An Update on Drug-Induced Pigmentation. American journal of clinical dermatology. 2018 Oct 29     [PubMed]
Mvango S,Matshe WMR,Balogun AO,Pilcher LA,Balogun MO, Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharmaceutical research. 2018 Oct 15     [PubMed]
Naß J,Efferth T, The activity of Artemisia spp. and their constituents against Trypanosomiasis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Aug 1     [PubMed]
Pinheiro LCS,Feitosa LM,Silveira FFD,Boechat N, Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. Anais da Academia Brasileira de Ciencias. 2018     [PubMed]
Tickell-Painter M,Maayan N,Saunders R,Pace C,Sinclair D, Mefloquine for preventing malaria during travel to endemic areas. The Cochrane database of systematic reviews. 2017 Oct 30     [PubMed]
Baker L, The Role of Pharmacists in Travel Medicine in South Africa. Pharmacy (Basel, Switzerland). 2018 Jul 19     [PubMed]
Mace KE,Arguin PM,Tan KR, Malaria Surveillance - United States, 2015. Morbidity and mortality weekly report. Surveillance summaries (Washington, D.C. : 2002). 2018 May 4     [PubMed]
Ballard SB,Salinger A,Arguin PM,Desai M,Tan KR, Updated CDC Recommendations for Using Artemether-Lumefantrine for the Treatment of Uncomplicated Malaria in Pregnant Women in the United States. MMWR. Morbidity and mortality weekly report. 2018 Apr 13     [PubMed]
Baraka V,Mavoko HM,Nabasumba C,Francis F,Lutumba P,Alifrangis M,Van Geertruyden JP, Impact of treatment and re-treatment with artemether-lumefantrine and artesunate-amodiaquine on selection of Plasmodium falciparum multidrug resistance gene-1 polymorphisms in the Democratic Republic of Congo and Uganda. PloS one. 2018     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of PA-Hospital Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for PA-Hospital Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in PA-Hospital Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of PA-Hospital Medicine. When it is time for the PA-Hospital Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study PA-Hospital Medicine.