Histology, Lung


Article Author:
Yusuf Khan


Article Editor:
David Lynch


Editors In Chief:
Jasleen Jhajj
Cliff Caudill
Evan Kaufman


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
10/9/2019 10:23:54 AM

Introduction

The lung functionally comprises 2 mechanisms: conduction and respiration. The conduction zone encompasses the movement and conditioning of inhaled air. The site of gas exchange and blood oxygenation involves the respiratory zone.

Structure

The conduction portion of the lung begins at the trachea and extends to the terminal bronchioles. Outside the lungs, the conduction system consists of the nasal cavities, nasopharynx, larynx, and trachea. Entering the lungs, the conducting portion spits into paired main bronchi. The bronchi begin a branching pattern, splitting next into lobar (secondary) bronchial branches and then again into segmental (tertiary) bronchi. The tertiary bronchi continue to divide into small bronchioles where the first change in histology takes place as cartilage is no longer present in the bronchioles. The end of the conduction portion of the lungs is at the final segment called the terminal bronchioles. The terminal bronchioles open into the respiratory bronchioles. This is the start of the respiration function of the lung.

The conducting portion provides the pathway for the movement and conditioning of the air entering the lung. Specialized cells collaborate to warm, moisturize, and remove particles that enter. These cells are the respiratory epithelium and comprise the entire respiratory tree. Most the respiratory epithelium is ciliated pseudostratified columnar epithelium. The following 5 types of cells are in this region:

  1. Ciliated cells
  2. Goblet cells
  3. Basal cells
  4. Brush cells
  5. Neuroendocrine cells

The ciliated cells are the most abundant. They control the actions of the mucociliary escalator,[1], a major defense mechanism of the lungs that removes debris. While the mucus provided by the goblet cells traps inhaled particles, the cilia beat to move the material towards the pharynx to swallow or cough out.

Goblet cells, so named for their goblet-shaped appearance, are filled with mucin granules at their apical surface with the nucleus remaining towards the basilar layer. Goblet cells decrease in number as the respiratory tree gets progressively smaller and are eventually replaced by club cells (previously Clara cells) when they reach the respiratory bronchioles.

The basal cells connect to the basement membrane and provide the attachment layer of the ciliated cells and goblet cells. They may be thought of like the stem cells of the respiratory epithelium as they maintain the ability to potentiate ciliated cells and goblet cells.[2]

Brush cells occasionally referred to as a type III pneumocyte cells are sparsely distributed in all areas of respiratory mucosa. Brush cells may be columnar, or flask-like and are identified by their squat microvilli covered apical layer–resembling a push broom or appropriately, a brush. No function has been officially assigned to the brush cells though there are many proposed mechanisms. One popular proposal suggests they have a chemoreceptor function, monitoring air quality, due to their associated with unmyelinated nerve endings. [3]

The bronchial mucosa also contains a small cluster of neuroendocrine cells, also known as Kulchitsky cells.[4] They have neurosecretory type granules and can secrete several factors, including catecholamine and polypeptide hormones, such as serotonin, calcitonin, and gastrin-releasing factors (bombesin). Like brush cells, these neuroendocrine cells make up only a small portion of mucosal epithelium, around 3%.

Within the bronchial submucosa are submucosal glands composed of a mixture of serous and mucinous cells, similar to salivary gland tissue.  Secretions are emptied into ducts and then on the bronchial mucosa. Older individuals may show oncocytic metaplasia of these glands.  Smooth muscle bundles are present at all levels of the airway to allow for regulation of airflow. There are progressively fewer smooth muscle fibers progressing from bronchi to alveoli.

Function

In the conducting zone, air is moistened, warmed, and filtered before it reaches the start of the respiratory zone at the respiratory bronchioles. The respiratory zone is where gas exchange occurs, and blood is oxygenated in exchange for carbon dioxide. As the respiratory tree transitions from the conducting zone at the terminal bronchioles, goblet cells diminish as club cells increase and the cartilage present in the conducting zone is absent once it reaches the respiratory bronchioles.

The acinus is directly distal to the terminal bronchioles and where the respiratory zone begins. The acinus is composed of respiratory bronchioles, alveolar ducts, and alveolar sacs. It is roughly spherical, resembling a bunch of grapes. Each respiratory bronchiole gives rise to several alveolar ducts and alveolar sacs–giving it that characteristic grape bunch appearance. The alveolar sacs are the ends of the respiratory tree and the site of gas exchange. 

Alveolar epithelium is composed to type I pneumocytes, type II pneumocytes, and the occasional brush cell. Also present in the alveolar walls are the club cells and alveolar macrophages. The alveolar walls contain the pores of Kohn[5][6] which allow communication between adjacent alveoli. This allows air to flow from one alveolus to another which may be beneficial if there is any blockage preventing air from entering alveoli through a direct route.

Type I pneumocytes make up roughly 90% to 95% of the alveoli. They are flat, squamous epithelia that resemble plate-like structures that allow gas exchange. Their thin membrane allows for easier gas permeability between the alveoli and the blood vessels. Despite being the primary method of respiration, they cannot replicate and are very susceptible to toxic injury.

Type II pneumocytes make up much of the remaining cell type in the alveoli, accounting for nearly 5%. Despite their low number, they are vital as they secrete pulmonary surfactant. The surfactant is necessary to maintain an open airway. It lowers the surface tension and prevents the alveoli from collapsing upon themselves during exhalation. By histology, these cells have foamy cytoplasm which results from surfactant that is stored as lamellar bodies. Type II pneumocytes are also mitotically active and can replace the easily damaged type I pneumocytes. Type II pneumocytes cells can be recognized on histology by their rounded shapes that bulge into the alveolar space.

Alveolar macrophages (or dust cells) may be free within the alveolar space or connected to the alveolar wall. If particles make it down to the acinus, the macrophages are the last defense and janitors of the respiratory epithelium. The black staining seen in lungs of smokers results from macrophages cleaning and sequestering particles that make their way inside.

The visceral pleura of the lung is lined by a mesothelial layer with underlying connective tissue and elastic fibers. An elastin stain may be used to identify the elastic layer.

Clinical Significance

Infant Respiratory Distress

Infant respiratory distress is the leading cause of death in premature babies. Type II pneumocytes produce surfactant starting around 20 weeks gestation, but it is not fully secreted until nearly 30 weeks of gestation. Without ample surfactant, premature infants cannot overcome the collapsing surface tension in the respiratory alveoli.  Physicians hope to prevent infant respiratory distress when a patient goes into premature labor by offering the parent glucocorticoids.[7] Glucocorticoids stimulate the production of surfactant in the fetus and may increase its production enough to help the infant overcome any potential respiratory distress. Testing for fetal lung maturity may be performed on the amniotic fluid by several methods, including the measurement of phospholipids in amniotic fluid (phosphatidylglycerol (PG) or lecithin-sphingomyelin ratio) and the lamellar body counts (LBC).

Emphysema

The most common cause of emphysema is smoking; although, it can be caused by repetitive inhalation of any foreign particulate material. Emphysema, or chronic obstructive pulmonary disease (COPD), is characterized by poor airflow and difficulty exhaling because of narrowing bronchioles and the destruction of the alveolar wall. The collapse of the alveoli results in a significant loss of surface area for gas exchange.

Healthcare professionals assume that the destruction of the alveolar wall is a result of excessive lysis of elastin in the interalveolar septum. The abundance of macrophages and neutrophils that migrate to the acinus due to an increase in particulate bring an equal increase of elastase and other proteases. Alpha 1-antitrypsin deficiency also causes emphysema because of an increase in elastin; however, in this disease, it is because the deficient antitrypsin usually inhibits elastin.

Cystic Fibrosis

Cystic fibrosis may also cause chronic obstructive pulmonary disease. It is an autosomal recessive disease caused by a mutation to the CFTR gene on chromosome 7. This gene controls the Cl- channel protein involved in a variety of cells, including goblet cells in the lungs. The defective Cl-channel affects the viscosity of the mucus in the lungs, thickening it due to increased absorption of sodium (Na) and water from the lumen. The thickened mucus disrupts the mucociliary escalator filtration function of the lungs resulting in obstruction. One of the supportive treatments for cystic fibrosis breaks the disulfide bonds found in mucous plugs, thinning out the sputum so it can be pushed out by the respiratory cilia.[8]

Heart Failure Cells

In heart failure, the heart's inability to move blood efficiently results in congestion of the lungs. The increase in pressure of the blood in the pulmonary vasculature results in erythrocytes passing into the alveolar septum. The erythrocytes are promptly taken up by resident alveolar macrophages. As the macrophages engulf any red blood cells present they are filled with hemosiderin and take on a brown granule appearance viewable under light microscopy with staining.[9] Hemosiderin-laden macrophages are more accurately called siderophages and are not specific to a certain disease but may be present whenever blood cells enter the alveolus.

Tumor Staging

When staging primary carcinoma of the lung, it is important to identify invasion of the elastic layer of the visceral pleura. This finding will increase the T stage of the tumor.  Since the elastic layer is difficult to visualize with routine stains, a special elastin stain may be used to demonstrate this finding.


  • Image 7094 Not availableImage 7094 Not available
    Contributed by David Lynch MD
Attributed To: Contributed by David Lynch MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Histology, Lung - Questions

Take a quiz of the questions on this article.

Take Quiz
The respiratory zone of the lung is identified microscopically by which structure?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Surfactant is produced by which of the following cell types?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What cell is indicated by the arrow (see image)?

(Move Mouse on Image to Enlarge)
  • Image 7094 Not availableImage 7094 Not available
    Contributed by David Lynch MD
Attributed To: Contributed by David Lynch MD



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which cell is depicted in the image?

(Move Mouse on Image to Enlarge)
  • Image 7096 Not availableImage 7096 Not available
    Contributed by David Lynch, MD
Attributed To: Contributed by David Lynch, MD



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 28-year-old Caucasian female, G1P1 gave birth to a female with 1 minute and 5 minute APGAR scores of 7 and 9 respectively. Routine genetic screening is ordered and the results show a positive mutation in the CTFR (cystic fibrosis transmembrane conductance regulator) gene. Which cell type in the lung is most affected by this mutation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Histology, Lung - References

References

Ganesan S,Comstock AT,Sajjan US, Barrier function of airway tract epithelium. Tissue barriers. 2013 Oct 1     [PubMed]
Evans MJ,Van Winkle LS,Fanucchi MV,Plopper CG, Cellular and molecular characteristics of basal cells in airway epithelium. Experimental lung research. 2001 Jul-Aug     [PubMed]
Brody AR, The brush cell. American journal of respiratory and critical care medicine. 2005 Nov 15     [PubMed]
Drozdov I,Modlin IM,Kidd M,Goloubinov VV, From Leningrad to London: the saga of Kulchitsky and the legacy of the enterochromaffin cell. Neuroendocrinology. 2009     [PubMed]
Desplechain C,Foliguet B,Barrat E,Grignon G,Touati F, [The pores of Kohn in pulmonary alveoli]. Bulletin europeen de physiopathologie respiratoire. 1983 Jan-Feb     [PubMed]
Cordingley JL, Pores of Kohn. Thorax. 1972 Jul     [PubMed]
Tomkiewicz RP,App EM,De Sanctis GT,Coffiner M,Maes P,Rubin BK,King M, A comparison of a new mucolytic N-acetylcysteine L-lysinate with N-acetylcysteine: airway epithelial function and mucus changes in dog. Pulmonary pharmacology. 1995 Dec     [PubMed]
Zampieri FM,Parra ER,Canzian M,Antonângelo L,Luna Filho B,de Carvalho CR,Kairalla RA,Capelozzi VL, Biopsy-proven pulmonary determinants of heart disease. Lung. 2010 Jan-Feb     [PubMed]
Bolt RJ,van Weissenbruch MM,Lafeber HN,Delemarre-van de Waal HA, Glucocorticoids and lung development in the fetus and preterm infant. Pediatric pulmonology. 2001 Jul     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Optometry-Basic Science. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Optometry-Basic Science, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Optometry-Basic Science, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Optometry-Basic Science. When it is time for the Optometry-Basic Science board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Optometry-Basic Science.