Streptococcus Pneumoniae


Article Author:
Christopher Dion


Article Editor:
John Ashurst


Editors In Chief:
Allison Castro


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
2/28/2019 10:05:11 PM

Introduction

Community-acquired pneumonia (CAP) is the seventh leading cause of death in the United States, and the cost of these hospitalizations is estimated to cost up to $9 billion United States (US) dollars each year. Thirty-day hospital mortality associated with CAP has been estimated to be as high as 22% and is the leading cause of death amongst all infectious diseases.

Streptococcus pneumoniae is the bacterium that has historically been the most common pathogen to cause CAP worldwide. In the era before antibiotics, S. pneumoniae was estimated to be the cause of 95% of all cases of pneumonia. Currently, however, S. pneumoniae accounts for up to 15% of pneumonia cases in the United States and 27% of cases worldwide today. Blood cultures are positive in only 20% to 25% of all pneumonia cases that are caused by S. pneumonia making it a challenging diagnosis for the clinician.[1][2][3]

Etiology

S. pneumonia was first isolated from the saliva of a patient with rabies in 1881 by Louis Pasteur and the association between lobar pneumonia, and Friedlander and Talamon first reported the bacteria in 1883. Although vaccination efforts were underway as early as 1911, the first pneumococcal vaccine was not produced in the United States until 1977 and the first conjugate vaccine in 2000.[4][5]

S. pneumonia is a lancet-shaped, gram-positive, facultative anaerobic organism that typically occurs in pairs or short chains. Encapsulated S. pneumonia is pathogenic for humans, and the capsular polysaccharide is the basis for which the organism is classified. As of 2011, a total of 92 separate serotypes have been isolated.

Epidemiology

Pneumococcal infections present through the world and are most common during the winter and early spring months. Although S. pneumoniae pneumonia can occur in all populations, it is more common in patients older than 65 years, younger than 2 years, those who smoke, abuse alcohol, have asthma or COPD, or are asplenic. The overall rate of confirmed S. pneumoniae infection in the United States is 5.16 to 6.11 cases/100,000 in adults with the rate for those older than 65 years being 36.4/100,000 and infants younger than 1 year being 34.2/100,000.[6][7][8]

Pathophysiology

Infection typically occurs after the colonization of the oropharynx and nasopharynx of healthy individuals. Inhalation of these colonies causes the infection of the lower airways. Infection, typically will not result unless a patient has predisposed risk factors, a bolus of infectious cells or due to a particularly virulent strain of S. pneumoniae.

Toxicokinetics

S. pneumonia has several virulence factors that allow it to cause infections in humans. A polysaccharide capsule interferes with phagocytosis by inhibiting the binding of complement C3b to the cell’s surface. Pneumococcal proteins also play a large role in the virulence of the bacteria. IgA1 protease interferes with host defense at mucosal surfaces, and neuraminidase prevents the attachment to epithelial cells. Other proteins that act in the virulence of S. pneumonia include pneumolysin, pneumococcal surface protein A, and autolysin. Lastly, pili allow for the adherence of the organism to cellular surfaces and play a role in host inflammation.

Over the last several years, drug-resistant S. pneumonia (DRSP) and penicillin-resistant S. pneumonia have become more common. Penicillin resistance is the result of alterations in the penicillin-binding protein (PBP) and affects the binding penicillin but not that of all the beta-lactams. DRSP is the result of genetic mutations that can either cause an active efflux of the drug out of the cell or block it from binding. Those at risk of DRSP include the extremes of age, recent antimicrobial therapy, either attending daycare or having a family member who attends daycare, having multiple co-morbid conditions, or being recently hospitalized.

History and Physical

Those with pneumonia may present with a wide array of symptoms, but the most common include dyspnea, cough, pleuritic pain, sputum production and fever. However, in many studies, these symptoms have been found to neither be sensitive or specific for the diagnosis of pneumonia. In the elderly, clinical presentation may not follow typical patterns, leading to delay in diagnosis and increased mortality. In the elderly symptoms such as generalized weakness, altered mental status and malaise could be the first signs of the illness.

A patient’s vital signs may be the most useful physical exam finding in diagnosing those with pneumonia. When tachypnea, hypoxia, or hyperthermia is present in a patient whom pneumonia is suspected, further diagnostic evaluation should be undertaken. Classical signs of consolidation such as egophony, rales, whispered pectoriloquy, dullness to percussion or bronchial breath sounds might be heard. However, multiple studies have shown that physical exam findings lack both sensitivity and inter-observer reliability in regards to diagnosing pneumonia.

Evaluation

Routine laboratory evaluation does not aid in diagnosing the organism causing pneumonia but may allow for better risk stratification of patients.[9][10]

Chest radiography has been considered to be the mainstay in diagnosing pneumonia. Classically lobar pneumonia has been taught to be caused by S. pneumonia. However new literature has shown that a radiograph is not reliable in determining the causative organism in pneumonia patients. Unfortunately, radiographs are not 100% sensitive in diagnosing pneumonia. Computed tomography (CT) has shown to have a better sensitivity and accuracy as compared to plain chest radiography to diagnose CAP but is used limitedly because of a relatively high cost and radiation exposure.

The diagnosis of the causative organism for pneumonia can be obtained through a variety of means including blood cultures, sputum analysis, and urinary antigens. The routine collection of blood cultures has been controversial in the literature. Recently the Centers for Medicaid and Medicare Services and the Joint Commission on Accreditation of Healthcare Organizations have noted that routine collection of blood cultures is no longer a core measure that is being tracked. Also, the American College of Emergency Physicians (ACEP) made a grade B recommendation against the routine collection of blood cultures in patients admitted with CAP. Further sources note that blood cultures should be obtained in those admitted to the intensive care unit, those with leukopenia, cavitary lesion, severe liver disease, alcohol abuse, asplenia or pleural effusions. When blood cultures are positive, the majority show S. pneumonia but rarely change clinical management.

Sputum cultures typically have had low sensitivity and specificity in detecting the causative organism for pneumonia. However, in those patients suspected of having a drug-resistant organism, sputum cultures should be obtained.

A urinary antigen does exist to aid the clinician in diagnosing cases of S. pneumonia and carries a sensitivity of 80% and a specificity of 97%. However, the usefulness in children is debatable due to many children being carriers of S. pneumonia.

Treatment / Management

The mainstay of treatment for patients with S. pneumonia is antibiotic therapy and supportive care including mechanical ventilation if necessary. Treatment of CAP varies based on the area of practice and severity of the disease. Patients with the low-risk CAP are typically treated as an outpatient with macrolide monotherapy. Respiratory fluoroquinolones are used in outpatient patients at higher risk. Non-ICU inpatients are treated with dual therapy of a b-lactam plus a macrolide or respiratory fluoroquinolone monotherapy. Patients admitted to the ICU should be treated with dual therapy of either a b-lactam plus a macrolide or a b-lactam plus respiratory fluoroquinolone. A recent Cochrane review shows non-superiority of any outpatient antibiotic regimen for CAP concerning the other drug classes.[11][12][13]

The first dose of antibiotic should be given as quickly as possible after the definitive diagnosis. The ACEP policy statement gives a level B recommendation that there is not enough evidence to establish a benefit in mortality or morbidity from starting the antibiotics in less than 4, 6, or 8 hours. The ACEP clinical policy also notes that there is not enough evidence to determine if there is a benefit in morbidity or mortality from antibiotics being administered within any specific time course but recommends to begin antibiotics as soon as the diagnosis is made.

Differential Diagnosis

  • Viral pneumonia
  • PCP
  • Influenza
  • Klebsiella pneumonia
  • Legionella pneumonia
  • Pleural effusion
  • Upper respiratory tract infection

Pearls and Other Issues

There are two vaccines commonly used for S. pneumoniae. The pneumococcal polysaccharide vaccine, PPSV23, and the pneumococcal conjugate vaccine, PCV13. In immunocompetent individuals, five doses of PCV13 are recommended during infancy and childhood. A repeat dose of PCV13 at age 65 is recommended followed by a dose of PSV23 one year later. In randomized control trials, PCV13 was shown to prevent the first episode of vaccine-serotype pneumococcal pneumonia. Although these vaccines have made great strides in decreasing S. pneumoniae pneumonia, there a number of serotypes not included in these vaccines. Although between the two vaccines the most prevalent serotypes are covered, there are approximately 90 serotypes in total and the vaccine will not foster immunity in all serotypes. Finally, it has been shown that influenza vaccination has a strong association with better outcomes and a decreased rate of pneumonia.

Enhancing Healthcare Team Outcomes

Streptococcal pneumonia is best managed with a multidisciplinary team that includes a pulmonologist, an infectious disease expert, ICU nurse, pharmacist, respiratory therapist, and a dietitian. Patients need to be educated on the importance of vaccination and its benefits. In addition, patients should be advised to stop smoking and remain compliant with the antibiotics. Since many patients with pneumonia are frail, a dietary consult should be sought to help improve the calorie intake. Others may need rehabilitation to restore muscle mass and increase exercise endurance. [14][15](Level V)

Outcomes

The prognosis for patients with streptococcal pneumonia depends on the underlying risk factors, comorbidity, age, the extent of lung involvement, need for mechanical ventilation and type of antibiotic. Overall, the pneumonia is associated with a high morbidity and mortality. Even those who survive tend to have residual deficits in lung mechanics and recovery is prolonged. Patients in the ICU tend to have the highest mortality approaching 3-20%. [1][16](level V)

 

 

 


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Streptococcus Pneumoniae - Questions

Take a quiz of the questions on this article.

Take Quiz
Which one of the following causes respiratory tract infections?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which antibiotic is specific for treatment of Streptococcus pneumoniae pneumonia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following pathogenic factors helps Streptococcus pneumoniae?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following accounts for more deaths than any other vaccine-preventable disease?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements is correct about S. pneumoniae?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is a virulence factor for Streptococcus pneumoniae?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 13-year-old male presents with a fever, productive cough, tachypnea, and lobar pneumonia. The patient fails outpatient treatment with a macrolide antibiotic, develops an empyema, and requires a chest tube. What is the most likely etiologic organism?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old female presents with fever, cough with sputum, and rigors. She has a past medical history significant for AIDS with a CD4 count of 55 cells/mm3. An exam reveals coarse breath sounds in the right lower lobe, and a chest radiograph reveals an opacity in the same area. What is the most common organism to cause this patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 29-year-old patient with a history of sickle cell disease presents to the emergency department with difficulty breathing and chest pain. He has a temperature of 101.5F, heart rate 104, and respiratory rate of 24/minute. The patient is diagnosed with septic shock secondary to Streptococcus pneumoniae. He received all recommended vaccinations until age 18. He has not received any vaccinations in the past 10 years. What serotype of S. pneumoniae is most likely responsible for his condition and what could have prevented this infection?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 42-year-old female with a past medical history of hypertension and hypercholesterolemia presents with a 3 day history of chest pain, fever, chills and productive cough. The patient has a temperature of 100.8F (38.2C), blood pressure of 128/84 mmHg, heart rate of 88 bpm strong and regular, and respiratory rate of 18/minute unlabored. Physical exam shows the patient has dullness to percussion over the left lower lung with rhonchi. Hematocrit is 39%, WBC 11k cells/mL, platelets 250k cells/mL, sodium 138 mmol/L, potassium 4.5 mmol/L, glucose 99 mg/dL. Chest x-ray shows consolidation in the left lower lobe. What is the proper disposition of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Streptococcus Pneumoniae - References

References

Luna CM,Pulido L,Niederman MS,Casey A,Burgos D,Leiva Agüero SD,Grosso A,Membriani E,Entrocassi AC,Rodríquez Fermepin M,Vay CA,Garcia S,Famiglietti A, Decreased relative risk of pneumococcal pneumonia during the last decade, a nested case-control study. Pneumonia (Nathan Qld.). 2018     [PubMed]
Cillóniz C,Dominedò C,Garcia-Vidal C,Torres A, Community-acquired pneumonia as an emergency condition. Current opinion in critical care. 2018 Sep 18     [PubMed]
Shoji H,Vázquez-Sánchez DA,Gonzalez-Diaz A,Cubero M,Tubau F,Santos S,García-Somoza D,Liñares J,Yuste J,Martí S,Ardanuy C, Overview of pneumococcal serotypes and genotypes causing diseases in patients with chronic obstructive pulmonary disease in a Spanish hospital between 2013 and 2016. Infection and drug resistance. 2018     [PubMed]
Regev-Yochay G,Chowers M,Chazan B,Gonzalez E,Gray S,Zhang Z,Pride M, Distribution of 13-Valent pneumococcal conjugate vaccine serotype streptococcus pneumoniae in adults 50 Years and Older presenting with community-acquired pneumonia in Israel. Human vaccines     [PubMed]
Quah J,Jiang B,Tan PC,Siau C,Tan TY, Impact of microbial Aetiology on mortality in severe community-acquired pneumonia. BMC infectious diseases. 2018 Sep 4     [PubMed]
Alqahtani AS,Tashani M,Ridda I,Gamil A,Booy R,Rashid H, Burden of clinical infections due to S. pneumoniae during Hajj: A systematic review. Vaccine. 2018 Jul 16     [PubMed]
Wahl B,O'Brien KL,Greenbaum A,Majumder A,Liu L,Chu Y,Lukšić I,Nair H,McAllister DA,Campbell H,Rudan I,Black R,Knoll MD, Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. The Lancet. Global health. 2018 Jul     [PubMed]
Boeddha NP,Schlapbach LJ,Driessen GJ,Herberg JA,Rivero-Calle I,Cebey-López M,Klobassa DS,Philipsen R,de Groot R,Inwald DP,Nadel S,Paulus S,Pinnock E,Secka F,Anderson ST,Agbeko RS,Berger C,Fink CG,Carrol ED,Zenz W,Levin M,van der Flier M,Martinón-Torres F,Hazelzet JA,Emonts M, Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical care (London, England). 2018 May 31     [PubMed]
Bellew S,Grijalva CG,Williams DJ,Anderson EJ,Wunderink RG,Zhu Y,Waterer GW,Bramley AM,Jain S,Edwards KM,Self WH, Pneumococcal and Legionella Urinary Antigen Tests in Community-acquired Pneumonia: Prospective Evaluation of Indications for Testing. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2018 Sep 28     [PubMed]
Ishiguro T,Yoshii Y,Kanauchi T,Hoshi T,Takaku Y,Kagiyama N,Kurashima K,Takayanagi N, Re-evaluation of the etiology and clinical and radiological features of community-acquired lobar pneumonia in adults. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2018 Jun     [PubMed]
Osowicki J,Steer AC, International survey of paediatric infectious diseases consultants on the management of community-acquired pneumonia complicated by pleural empyema. Journal of paediatrics and child health. 2018 Jul 27     [PubMed]
Jakhar SK,Pandey M,Shah D,Ramachandran VG,Saha R,Gupta N,Gupta P, Etiology and Risk Factors Determining Poor Outcome of Severe Pneumonia in Under-Five Children. Indian journal of pediatrics. 2018 Jan     [PubMed]
Lewandowska K,Kuś J, [Community acquired pneumonia - treatment options according to the international recommendations]. Wiadomosci lekarskie (Warsaw, Poland : 1960). 2016     [PubMed]
Green C,Moore CA,Mahajan A,Bajaj K, A Simple Approach to Pneumococcal Vaccination in Adults. Journal of global infectious diseases. 2018 Jul-Sep     [PubMed]
Herbert JA,Kay EJ,Faustini SE,Richter A,Abouelhadid S,Cuccui J,Wren B,Mitchell TJ, Production and efficacy of a low-cost recombinant pneumococcal protein polysaccharide conjugate vaccine. Vaccine. 2018 Jun 18     [PubMed]
Blot M,Pauchard LA,Dunn I,Donze J,Malnuit S,Rebaud C,Croisier D,Piroth L,Pugin J,Charles PE, Mechanical ventilation and Streptococcus pneumoniae pneumonia alter mitochondrial homeostasis. Scientific reports. 2018 Aug 6     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Microbiology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Microbiology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Microbiology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Microbiology. When it is time for the Nurse-Microbiology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Microbiology.