Anatomy, Thorax, Heart Anomalous Left Coronary Artery


Article Author:
Yvonne Carter


Article Editor:
Kunal Mahajan


Editors In Chief:
Chaddie Doerr


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
1/4/2019 12:44:57 AM

Introduction

An anomalous left main coronary artery with its origin from the pulmonary artery (ALCAPA) is one of the few clinically significant coronary anomalies.  While the majority of congenital coronary artery abnormalities involve various origins of the vessels from the aorta and are usually benign, ALCAPA can be fatal either during infancy or result in sudden death in adulthood.  The incidence of ALCAPA is between 1:30,000 and 1:300,000 infants, and accounts for 0.25-0.5% of congenital cardiac defects.  Albeit rare, it is the most common cause of myocardial infarction in pediatric patients.[1][2]  Collaterals originating from the right coronary artery perfuse the left coronary artery (LCA), which subsequently drain into the pulmonary artery (PA).  Less commonly, the defect involves the right, rather than the main pulmonary artery.  Rarely the defect includes the circumflex, right coronary, or both coronary arteries.  Perfusion of the anomalous left coronary is maintained by the elevated pulmonary artery pressures after birth. Without clinical appreciation and correction, this major defect is fatal.  

Structure and Function

Approximately 15% of patients will have an associated anomaly.  The literature describes ALCAPA in combination with ventricular septal defects (VSD), patent ductus arteriosus (PDA), tetralogy of Fallot (TOF), pulmonary valvular stenosis, coarctation of the great vessels, and one case of hypoplastic left heart syndrome.[1] Should the presence of one of these defects result in an increase in the pulmonary artery pressure, there is a resultant decline in the degree of myocardial ischemia.  Associated anomalies are more likely to be present in defects involving the right pulmonary artery rather than the main pulmonary artery. 

Physiologic Variants

Symptoms usually occur within the first two months of life–the time the ductus arteriosus closes, as the clinical effect of ALCAPA is dependent on the pressure difference between the systemic and pulmonary circulatory systems.  Decreased resistance in the pulmonary vasculature results in a left-to-right shunt from the right coronary artery to the PA–coronary steal phenomenon.  The elevated pulmonary vascular resistance in utero results in systemic pulmonary arterial pressures.  Consequently, the perfusion through the anomalous LCA is sufficient, albeit desaturated. Thus, symptoms rarely present early during infancy.  Antegrade flow through the LCA decreases with the decline in PA pressure and pulmonary vascular resistance, and becomes more dependent on the collateral network between the right and left coronary arteries. The maturity of this collateral network will determine the clinical course after the ductal closure, as it ultimately determines the myocardial viability. A child with a well-developed collateral network may survive past infancy, albeit with progressive LV dysfunction.  The lack of adequate collateral vessels from the RCA causes myocardial ischemia and ventricular dysfunction from insufficient perfusion, with eventual myocardial infarct, aneurysmal changes, and ultimately death.  Early ischemic changes are usually located within the subendocardium with a patchy distribution.  

The typical clinical symptoms appreciated at 4-6 weeks include poor feeding, tachypnea, failure to thrive, and pallor.  With an enlarged cardiac silhouette seen on chest x-ray, children are commonly diagnosed with heart failure due to a dilated cardiomyopathy.   Clinicians have confused a syndrome of severe pallor, diaphoresis, and irritability as infantile colic, in which the term "anginal equivalent" was coined[2].  It is pertinent to suspect an anomalous coronary defect in infants presenting with heart failure and dilated cardiomyopathy.  In older children, due to mature collateral networks or associated defects maintaining elevated pulmonary vascular resistance, complaints include angina, dyspnea, and fatigue.  The defect may result in arrhythmias or even sudden death.

Physical exam findings include tachypnea, tachycardia, a gallop rhythm, cardiomegaly, hepatomegaly, and commonly a systolic ejection murmur due to mitral regurgitation.  The murmur is a result of either papillary muscle dysfunction or the ventricular remodeling.  The enlarged cardiac silhouette on chest x-ray is nonspecific; however, pulmonary congestion is also common in infants.  Lateral or anterolateral infarction with Q waves and elevated ST segments on electrocardiogram (ECG) are classic findings in infants.  In older children and adults, the Q waves are less prominent; however, hypertrophy of the posterobasal left ventricular wall may be appreciated.

Diagnostic studies include echocardiogram and cardiac catheterization.  A dilated, poorly contracting left ventricle is common on echocardiography, with mitral regurgitation due to a poorly mobile posterior leaflet.  It is possible to visualize the coronary ostia on color-flow Dopper echocardiography; however, coronary angiography remains the best diagnostic tool and should be obtained if color-flow Doppler does not identify both ostia with certainty.  While the anomalous LMCA may originate anywhere along the main PA or one of the branches, it most commonly originates from the rightward posterior sinus. Coronary arteriogram will also show the collaterals originating from the RCA, late filling of the PA, and the left-to-right shunt.  The cardiac catheterization will also document elevated LV end-diastolic, left atrial and pulmonary artery pressures.  Pulmonary angiography may be performed if doubt remains about the diagnosis, or the origin of the LCA ostium is uncertain.  Magnetic resonance angiography (MRA) has been reported to be useful in defining the proximal course of the vessels.[3]

Surgical Considerations

Without surgical correction, this anomaly is fatal. Simple ligation of the anomalous LCA was the first successful operation described for ALCAPA.  Ligation of the LMCA from the PA excluded the left-to-right shunt, thus allowing the collaterals from the RCA to perfuse the ventricle.  This procedure has since fallen out of favor due to the significant risk of sudden death.  Additional surgical corrections include bypass, reimplantation, and in situ conduit procedures, with the ultimate goal of developing a dual coronary artery system.  Bypass grafting has used the left subclavian artery, internal mammary artery, and saphenous vein graft, but the results have been disappointing.    Ultimately, reimplantation, if possible, is the ideal technique.  This approach depends on the left coronary artery to be sufficient length for mobilization to the left sinus of Valsalva.  If arterial mobilization is an issue, an ostium can be created in another part of the aorta for reimplantation.  Takeuchi fashioned a conduit to direct flow from the aorta to the anomalous artery by creating an aortopulmonary window and intrapulmonary baffle with a flap of the pulmonary artery.[4] Dehiscence of the baffle–a cited complication–results in the redevelopment of the left-to-right shunt.  The outcome depends on the degree of irreversible ventricular dysfunction.  However, neither severe ventricular dysfunction nor mitral insufficiency is a contraindication to revascularization, as significant recovery is the norm.  Management of the mitral insufficiency remains controversial.  While the regurgitation resolves in most cases with revascularization, the extremely rare case of substantial myocardial ischemia with infarcted papillary muscles exists.  In this case, valvular repair has shown good results.[5][6]


  • Image 7329 Not availableImage 7329 Not available
    Image courtesy S Bhimji MD
Attributed To: Image courtesy S Bhimji MD

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Thorax, Heart Anomalous Left Coronary Artery - Questions

Take a quiz of the questions on this article.

Take Quiz
Which feature in a neonate may distinguish between heart failure due to an anomalous left coronary artery and heart failure due to a ventricular septal defect?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
WHich one of the following structural cardiac anomalies is not associated with an anomalous left coronary artery from the pulmonary artery (ALCAPA)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is true regarding mitral regurgitation associated with an anomalous left coronary artery from the pulmonary artery (ALCAPA)?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Thorax, Heart Anomalous Left Coronary Artery - References

References

Takeuchi S,Imamura H,Katsumoto K,Hayashi I,Katohgi T,Yozu R,Ohkura M,Inoue T, New surgical method for repair of anomalous left coronary artery from pulmonary artery. The Journal of thoracic and cardiovascular surgery. 1979 Jul     [PubMed]
Sarris GE,Drummond-Webb JJ,Ebeid MR,Latson LA,Mee RB, Anomalous origin of left coronary from right pulmonary artery in hypoplastic left heart syndrome. The Annals of thoracic surgery. 1997 Sep     [PubMed]
Mahle WT, A dangerous case of colic: anomalous left coronary artery presenting with paroxysms of irritability. Pediatric emergency care. 1998 Feb     [PubMed]
Lachhab F,Amri R,Mahfoudi L,Moughil S, Abnormal Origin of the Left Coronary Artery From the Pulmonary Artery Discovered at Age 67: What to Do? World journal for pediatric & congenital heart surgery. 2018 Oct 18     [PubMed]
Yamanaka S,Uchimuro T,Amagaya S,Yun R,Onga Y,Itou C,Saito D,Shimizu M,Wada K,Yoshio T,Takanashi S, [Aorta-left Main Trunk Interposition for Adult Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery Using a Prosthetic Graft;Report of a Case]. Kyobu geka. The Japanese journal of thoracic surgery. 2018 Nov     [PubMed]
    [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Maternal Newborn PN. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Maternal Newborn PN, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Maternal Newborn PN, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Maternal Newborn PN. When it is time for the Nurse-Maternal Newborn PN board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Maternal Newborn PN.