Physiology, AV Junction


Article Author:
Shan Tandon


Article Editor:
Talal Alzahrani


Editors In Chief:
Sherri Murrell


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
8/27/2019 1:20:11 PM

Introduction

Atrioventricular (AV) junction is the area separating atria and the ventricles of the heart.[1] Specifically, when talking about the AV junction, the focus is put more on its contents, the AV node and the nonbranching bundle of His. The AV junction plays a role in the pathology including atrioventricular nodal re-entrant tachycardia (AVNRT) and junctional rhythms which are rhythms that originate at the AV junction due to disruption in communication from the SA node.

Issues of Concern

The AV junction plays a significant role in the propagation of a signal from the sinoatrial (SA) node to the ventricles. Understanding the structure-function relationship will allow further advances in treatment regarding arrhythmias and AV blockage.

Cellular

The AV junction consists of the AV node and the bundle of his. AV node divides into a compact node (CN) and a lower nodal bundle. The lower nodal bundle extends to the rightward inferior nodal extension (INE) which spreads along with the tricuspid valve toward the coronary sinus, and the leftward nodal extension spreads from the CN along the tendon of Todaro.[1]

The AV junction is found to have two conduction pathways a slow pathway (SP) and a fast pathway(FP). The slow pathways are located in the inferior nodal extension while the fast pathway is less defined. AV node consists of numerous types of cells including rounded cells, transitional cells, Purkinje cells, and myocardial cells. The pacemaker cells are oval containing sparse and randomly organized myofibrils with numerous sarcoplasmic reticulum. Cell size dictates conduction velocity with the larger cells promoting faster conduction and smaller cells conducting at a slower velocity. Heterogeneity within the AV node could account for dual pathways. The SP contains small cells while the longer FP contains cells with a larger diameter. Myofibrils adjacent to the SP exhibit decreased density versus closer to the CN. Decreased striation density also occur near the CN in comparison to the surrounding cells.  Comparatively the Bundle of His is composed of elongated cells. Due to the connection of the left nodal extension and the  CN, a substrate is formed allowing slow conduction and potential re-entrant arrhythmias within the AV node. Additionally, in dilated cardiomyopathy, it was found that the left nodal extension is longer.[1] The bundle of His consist of connection between the AV node and the left and right bundle branch located in the deep, dense connective tissue. Bundle of His is a group of organized collagen that separates it from the AV node on histology. Signals are sent through gap junctions, using connexions. The composition of connexions is heterogeneous within the AV node which leads to several functional consequences including AV delay.[1]

Development

AV junction forms from the fusion of the atrioventricular sulcus and cushions. The disruption of the continuity between the atria and the ventricles lies at the ventricle margin of the atrioventricular junctional myocardium. The process of separation between the atria and ventricle begins at 7 weeks at the anteromedial portion of the right atrioventricular junction. At 12 weeks the fusions of the atrioventricular sulcus and cushions have been completed. During development, the atrioventricular insulation matures first while the left-sided fibrous annulus is shown to better developed in an adult heart.[2] The heart develops from the mesoderm, and as the newly formed heart starts to develop cardiomyocytes begin to depolarize, creating a slow electrical impulse. The specialized conductor cells become insulated by fibroblasts that originate from multipotent neural stem cells. The annulus fibrous which is fibrous tissue that develops from the epicardial mesenchyme and separated the developing atria and ventricles.[3]

Function

The AV node and the bundle of His comprise the AV junction. The AV node plays a gatekeeper role delaying the signal between the atria and the ventricles; this prevents premature contractions of the ventricle that has not filled. It also can function in a protective role in becoming the dominant pacemaker of the heart in times of SA node failure. The bundle of His conducts the signal from the AV node to the left and right bundles to the Purkinje cells of the ventricles.[1]

Mechanism

Similar to the SA node, the AV node has the potential to be a pacemaker. The difference in nodes is the rate with the SA node 60 to 100 bpm and AV node 20 to 60 bpm. Pacemakers cells in the nodes depolarized during diastole through Funny current Na+ and K+ channels that increase, which triggers an action potential. The action potential upstroke involves Ca2+ rushing in contrast to Na+, which is prominent in the myocyte action potential. The cell them repolarizes to its resting membrane potential due to the efflux of K+.[1]

Pathophysiology

Due to the structure and function of the AV junction, it is susceptible to re-entry. Atrioventricular nodal re-entry tachycardia is the most common. AV block is also a common pathology due to AV nodal dysfunction.

Atrioventricular nodal re-entry tachycardia:The reentrant circuit directly involves the AV node. The AV node has two pathways, the fast which has a longer refractory period and the slow, which has a shorter refractory period. It forms from the re-entry circuits between the AVN, fast pathway, slow pathway, and the atrial myocardium. Most common being slow-fast AVNRT with slow AV nodal pathway for anterograde conduction and Fast av nodal conduction for retrograde conduction. If there is a premature atrial beat, then the slow pathway can travel up the fast pathway and restimulate itself, creating a loop, which increases the heart rate much higher than a normal with supraventricular tachycardia found on electrocardiogram (ECG).

Atrioventricular block:Mobitz type 1 is the prolongation of the PR interval until finally complete block of the atrial impulse and a drop of the QRS. While Mobtiz type 2 is a constant PR interval until one atrial impulse is blocked, resulting in no QRS following. It is most likely from damage to the infranodal conduction system so a widened QRS may present on EKG. Mutations in sodium channels are highly suggested to result in AVN block; this may be congenital or due to exogenous factors including ischemia and Lyme disease, which cause damage to the AV conduction pathway.

Atrioventricular reentrant tachycardia:This condition is due to an accessory pathway outside the AV node that allows for re-entry stimulation of the AV node, which can lead to a tachyarrhythmia. It classifies as supraventricular tachycardia. It can get triggered by a premature atrial or ventricular contraction, which can stimulate a reentrant impulse[4]Wolff-Parkinson White: Wolff-Parkinson White is an electrical cardiac disorder resulting from an accessory pathway that communicates between the atria and the ventricles. The accessory pathway has the name of the bundle of Kent. It does not have rate slowing properties and conducts electrical activity at a higher rate, leading to stunning of the heart resulting in cardiogenic shock.[4]

Clinical Significance

Patients with AVNRT will present with an increased heart rate (over150 bpm) and supraventricular tachycardia on ECG. Treatment modalities include performing the Valsalva maneuver and pharmacologic intervention with non-dihydropyridine calcium channel blockers and adenosine. For individuals with arrhythmias that are recurrent, minimally invasive procedures are available, including catheter ablation of the middle or inferior portion of the triangle of Koch.[1] AV blocks are treated differently depending on the circumstance. Mobitz Type 1 treatment is not necessary, but if hypotension and bradycardia occur, then atropine is recommended to increase the rate. In Mobitz Type 2 implies damage to the AV conduction system, causing the rhythm to progress to complete heart block, which is why transvenous pacing is necessary until placement of a permanent pacemaker. Mobitz type 2 patients do not respond to atropine.[5] Wolff-Parkinson White presents with palpations, dizziness, and shortness of breath. ECG presents with a shortened PR, widened QRS and delta waves. Fainting may be present in episodes of supraventricular tachycardia. Recommended treatment includes procainamide or amiodarone and catheter ablation of the accessory pathway.[6]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, AV Junction - Questions

Take a quiz of the questions on this article.

Take Quiz
A 26-year-old male presents to the emergency room with shortness of breath and dizziness. Three weeks ago he went hiking in the woods of British Columbia. Patient history shows no previous myocardial infarctions or acute ischemic attacks. EKG shows regular RR intervals with rhythmic dissociation between the P and QRS waves. Which of the following is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old patient was brought in to the emergency room after an episode of fainting. The patient explains that he experienced previous symptoms of shortness of breath, palpitations, and dizziness. On EKG, a shorted PR interval, widened QRS and delta waves are seen. Which of the following treatments is least likely to be helpful in treating the patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 28-year-old marathon runner comes in for a routine examination. He has no active complaints or history of heart disease. EKG was performed and a PR interval greater than 200 ms was found. Which of the following best describes the patient's findings?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents to the clinic with palpitations and shortness of breath. On examination is heart rate is over 150 bpm. An EKG is done shows signs of supraventricular tachycardia. The patient's chart shows previous similar episodes in the past which were diagnosed as atrioventricular nodal re-entrant tachycardia. What is the mechanism of action of the best initial treatment for this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 55-year-old patient presents to the clinic for follow up after an inferior wall myocardial infarction that occurred a few months ago. On examination, vital signs are normal with a slight shortness of breath. On EKG, prolongation of the PR interval with drops in the QRS is seen. What is the mechanism of action of the most appropriate treatment for this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, AV Junction - References

References

George SA,Faye NR,Murillo-Berlioz A,Lee KB,Trachiotis GD,Efimov IR, At the Atrioventricular Crossroads: Dual Pathway Electrophysiology in the Atrioventricular Node and its Underlying Heterogeneities. Arrhythmia     [PubMed]
Jones WM,Napier L, Atrioventricular Block Second-Degree 2019 Jan;     [PubMed]
Kesler K,Lahham S, Tachyarrhythmia in Wolff-Parkinson-White Syndrome. The western journal of emergency medicine. 2016 Jul;     [PubMed]
Voss F,Eckardt L,Busch S,Estner HL,Steven D,Sommer P,von Bary C,Neuberger HR, [AV-reentrant tachycardia and Wolff-Parkinson-White syndrome : Diagnosis and treatment]. Herzschrittmachertherapie     [PubMed]
Wessels A,Markman MW,Vermeulen JL,Anderson RH,Moorman AF,Lamers WH, The development of the atrioventricular junction in the human heart. Circulation research. 1996 Jan;     [PubMed]
van Weerd JH,Christoffels VM, The formation and function of the cardiac conduction system. Development (Cambridge, England). 2016 Jan 15;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Elder Adult Care. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Elder Adult Care, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Elder Adult Care, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Elder Adult Care. When it is time for the Nurse-Elder Adult Care board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Elder Adult Care.