24-Hour Urine Collection


Article Author:
Christopher Corder


Article Editor:
Stephen Leslie


Editors In Chief:
Sherri Murrell


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
9/21/2019 4:13:33 PM

Introduction

A 24-hour urinalysis is a timed urine collection used in the metabolic evaluation of urinary stone disease. Results are used to identify specific risk factors for stone disease. The testing is performed in an outpatient setting using the patient's normal diet. Results are combined with detailed medical and dietary history, serum chemistry, and stone composition to guide prophylactic stone-reducing treatment. A 24-hour urine study can also be used in the pediatric population when inherited conditions such as primary hyperoxaluria and cystinuria are involved. [1][2]

Specimen Requirements and Procedure

Instructions for collecting a 24-hour urine sample vary by the laboratory. Typically, the patient's first voided morning urine is discarded. Subsequent urine produced for next 24 hours including the next morning's first voided specimen, is collected in containers that are provided by the laboratory. A preservative solution is added to the urine collection to stabilize the sample for later analysis. Once a full 24 hours of urine is collected, the total volume is recorded. A representative sample from the total collection is then submitted to the laboratory for analysis. Serum samples, usually calcium, potassium, uric acid, and phosphorus, are sometimes also included in the study. It is important for patients to adhere to their normal diet and activities during the collection.[3][4]

Once the analysis is complete, a detailed report of the results is provided to the ordering clinician. These results are used to direct prophylactic medical management. Collecting a sample for a full 24 hours can be difficult for some patients and is certainly inconvenient. However, it is necessary to accurately and reliably identify urinary chemistry risk factors for calculus formation as spot urine chemistry is inadequate.

A chemical composition analysis of any stone material is very helpful if available.

Diagnostic Tests

Various labs offer 24-hour urine testing which provides clinicians a detailed laboratory report stratifying stone risk based on the laboratory data points. Typically, 24-hour urine tests for nephrolithiasis prophylaxis will include urinary volume, pH, calcium, citrate, magnesium, phosphate, sulfate, oxalate, and uric acid. Supersaturation ratios for various stone types can then be calculated. In patients with a history of cystine stones or a positive cystine cyanide test, 24-hour cystine levels can also be measured.[5][6]

Finding or selecting a laboratory for processing 24-hour urine chemistries can sometimes be challenging. Optimally, all the testing is done in a single laboratory, and the results are presented clearly on just 1 or 2 pages. The 24-hour totals and the relative concentrations should both be given. Be aware that "normal" values are not necessarily "optimal" values for urinary chemical constituents. Optimal urinary chemistry reference values are not reported which makes interpretation a little more complicated. Try to use a laboratory that performs a lot of 24-hour urine testing and reports all the results together. When multiple reports from several laboratories have to be combined to retrieve all the data, it is far more difficult to correlate and analyze.

Results, Reporting, Critical Findings

Components of 24-hour urine exams vary by the laboratory. Components included in most standard 24-hour analyses include urine volume, the concentration of urine calcium, oxalate, citrate and uric acid, urine pH level, and supersaturation values. Supersaturation of calcium oxalate, calcium phosphate, and uric acid are commonly reported. Other analytes include urine potassium, magnesium, phosphorus, ammonium, chloride, sulfate, and nitrogen in the form of urea. Reports typically include reference range values that help stratify risk of stone formation. Specialized testing is also available for pediatric patients and patients with cystinuria. These tests include cysteine excretion, supersaturation, and urine pH. The interpretation of urine chemistry requires reference ranges. Urine chemistry is a continuous variable making the strict cut-off points and abnormal values somewhat arbitrary. As urinary constituents reach outside of normal or optimal ranges, the lithogenic risk increases.[7]

Below is a summary of the key components of the 24-hour urinalysis and their importance.

Urine Volume and Creatinine

Decreased urine volume is a major risk factor for stone disease as concentrated urine raises the supersaturation of all stone-forming salts. A prospective trial by Borghi et al. in 1999 helped define a goal urinary volume level of 2500 mL per day to reduce stone risk. Furthermore, urine volumes over this amount can decrease stone risk even further.

Urine creatinine excretion is used to determine the accuracy of a timed urine collection. As a byproduct of muscle metabolism, the excretion of creatinine is relatively stable based on muscle mass.  Average daily excretion of creatinine for males is 18 to 24 mg/kg and 15 to 20 mg/kg for females. Thus, a lower than expected creatinine excretion suggests an incomplete collection.

pH

Human urine has a pH typically between 4.5 and 8.0.  Urine pH is a critical data point as changes in urine pH can drive crystallization of certain salts. Crystallization of calcium phosphate, calcium oxalate, uric acid, cystine, and struvite are all pH-dependent. Calcium oxalate precipitation is typically not as pH-dependent as the others. Uric acid stone risk is greatest in the acidic range below 5.5. Calcium phosphate crystals form in an alkaline environment of 6.5 and above. Average urine pH over a 24-hour period should fall between 5.7 to 6.3, which limits pH-dependent stone formation.

Sodium and Potassium

Urinary sodium excretion roughly equates to dietary sodium intake. As urinary sodium increases, urinary calcium excretion increases. Because of this relationship, control of dietary sodium is key to controlling hypercalciuria. Lower sodium diets typically allow for up to 1500 mg of dietary sodium per day. Urinary potassium concentration is most useful in monitoring compliance of treatments such as potassium citrate. Potassium citrate supplements should result in marked increases in urinary potassium secretion.

Magnesium

Magnesium is an inhibitor of urinary crystallization thus decreasing stone risk. Roughly half of the dietary magnesium is excreted in the urine. Low urine magnesium is typically dietary in origin.

Calcium

Elevated urinary calcium concentration can be found in nearly half of patients forming calcium stones. Urine calcium concentration is dependent on dietary calcium, sodium intake, and protein intake.  Moderate calcium intake is typically recommended to limit urinary excretion while maintaining bone health. Diets low in calcium can be lithogenic, due to increased oxalate absorption in a low calcium diet. Modulation of urine calcium is often accomplished with diet changes or medications depending on etiology.

Citrate

Citrate is a potent inhibitor of calcium salt crystallization. Hypocitraturia is a common risk factor for stone disease and can be found in up to a third of calcium stone formers. Low urinary citrate can be from a variety of factors including diet, metabolic acidosis, or hypokalemia. Hypocitraturia can also be idiopathic. Citrate can be found in foods such as citrus juice. Most patients with low urinary citrate require supplementation as dietary means alone is insufficient.

Concentrated citrate supplements such as potassium citrate are commonly available. Optimal urinary citrate levels are roughly 300 mg per 1000 mL of urine. Low urinary citrate levels in the setting of thiazide therapy may correlate with hypokalemia. A 24-hour urine study is used to monitor urinary citrate concentration and resultant urinary pH level. Over alkalinizing the urine can predispose to calcium phosphate stones if the pH consistently exceeds 7.0.

Oxalate

High urine oxalate is another common abnormality in the urine of calcium stone formers. Roughly a third of calcium stone formers will have elevated urine oxalate. Oxalate is both endogenous and dietary. Dietary oxalate is absorbed in the colon and distal portions of the ileum. Normal oxalate excretion ranges from around 40 to 50 mg per day. Reductions in excretion can have goals as low as 25 mg per day. Dietary sources of oxalate include black tea, nuts, chocolate and green leafy vegetables like spinach. Excessive vitamin C supplements are also metabolized to oxalate in the urine. For this reason, vitamin C supplements should be limited to 1000 mg or less daily. Enteric hyperoxaluria can be a significant risk factor for patients with inflammatory bowel disease, cystic fibrosis, pancreatic insufficiency, or previous bariatric bowel surgery.

A more detailed review of 24-hour urine chemistry interpretation and treatment guide for kidney stone prevention can be found in our companion review article 24-Hour Urine Testing for Nephrolithiasis: Guide to Interpretation by Leslie and Bashir.

Clinical Significance

The 24-hour urinalysis is a key component of the metabolic workup for recurrent stone formers. Accurate collections can detect treatable abnormalities predisposing to nephrolithiasis, and monitor treatment progress. Urinary constituents are highly variable based on diet and lifestyle factors. Interpretation is complex and often subjective due to this variability. Commercially available tests make analysis easily accessible. Metabolic evaluation utilizing 24-hour analysis is recommended for recurrent stone formers based on current guidelines.

Over 90% of kidney stone patients tested will demonstrate at least one chemical disorder that is sub-optimal. The fact that patients typically feel no better on treatment makes it far more challenging to keep patients on therapy long term. Therefore, those patients who are the most strongly motivated to minimize their kidney stone risk long-term and are likely to continue treatment long term will receive the most benefit from this testing. Twenty-four-hour urine testing is not curative, but it does direct effective prophylactic treatment for those who are willing to follow therapeutic guidelines on a long-term basis.

Enhancing Healthcare Team Outcomes

A 24-hour urinalysis is a timed urine collection used in the metabolic evaluation of several types of kidney disorders. The urine collection is most often done by the nurse for in-patients. The nurse should be familiar with the urine collection and the need to keep it free of contaminants. When the testing is done in an outpatient setting, the patient needs to be educated on how to collect the urine. Accurate collections can detect treatable abnormalities predisposing to nephrolithiasis, glomerulonephritis or the nephrotic syndrome and help monitor treatment progress. [8][9]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

24-Hour Urine Collection - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is most important when doing a 24-hour urine collection?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which statement is most accurate regarding obtaining a 24-hour urine specimen?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
In order to confirm an accurate 24-hour urine collection, excretion of which of the following should be checked?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the optimal daily urine volume recommended for stone formers?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
In addition to a thorough history, physical exam, dietary history, serum chemistry, and urinalysis, which of the following can help identify additional risk factors for stone formation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A nurse is educating a client on a 24-hour urine collection ordered for measurement of creatinine clearance. What are the essential concepts to highlight? Select all that apply.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

24-Hour Urine Collection - References

References

Boyd C,Wood K,Whitaker D,Ashorobi O,Harvey L,Oster R,Holmes RP,Assimos DG, Accuracy in 24-hour Urine Collection at a Tertiary Center. Reviews in urology. 2018     [PubMed]
Soldi LR,Maltos AL,da Cunha DF,Portari GV, Correlation Between First Morning Single Void and 24-Hour Urines: The Reliability to Quantify Niacin Status. Medical science monitor basic research. 2018 Nov 26     [PubMed]
Résimont G,Gadisseur R,Lutteri L,Krzesinski JM,Cavalier E,Delanaye P, [How I explore‚Ķ a proteinuria]. Revue medicale de Liege. 2018 Oct     [PubMed]
Mohammadi Sichani M,Jafarpisheh A,Ghoreifi A, Evaluation and Comparison of Metabolic Disorders between Patients with Unilateral and Bilateral Staghorn Renal Stones. Urology journal. 2018 Sep 11     [PubMed]
Stremke ER,McCabe LD,McCabe GP,Martin BR,Moe SM,Weaver CM,Peacock M,Hill Gallant KM, Twenty-Four-Hour Urine Phosphorus as a Biomarker of Dietary Phosphorus Intake and Absorption in CKD: A Secondary Analysis from a Controlled Diet Balance Study. Clinical journal of the American Society of Nephrology : CJASN. 2018 Jul 6     [PubMed]
McLean RM,Williams SM,Te Morenga LA,Mann JI, Spot urine and 24-h diet recall estimates of dietary sodium intake from the 2008/09 New Zealand Adult Nutrition Survey: a comparison. European journal of clinical nutrition. 2018 Aug     [PubMed]
Leslie SW,Bashir K, 24-Hour Urine Testing for Nephrolithiasis Interpretation null. 2018 Jan     [PubMed]
Rodelo-Haad C,Esquivias-Motta E,Agüera ML,Aljama P,Rodríguez-Benot A, 24-Hour Proteinuria Versus Spot Protein-Creatinine Ratio for Kidney Transplant Management in Clinical Practice. Transplantation proceedings. 2018 Mar     [PubMed]
Friedlander JI,Antonelli JA,Canvasser NE,Morgan MSC,Mollengarden D,Best S,Pearle MS, Do Urinary Cystine Parameters Predict Clinical Stone Activity? The Journal of urology. 2018 Feb     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Elder Adult Care. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Elder Adult Care, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Elder Adult Care, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Elder Adult Care. When it is time for the Nurse-Elder Adult Care board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Elder Adult Care.