Hemorrhage


Article Author:
Anna Johnson
Abdul Waheed


Article Editor:
Bracken Burns


Editors In Chief:
Casey Ciresi


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
5/29/2019 12:09:12 PM

Introduction

Hemorrhage is an acute loss of blood from a damaged blood vessel. The bleeding can be minor, such as when the superficial vessels in the skin are damaged, leading to petechiae and ecchymosis. It can also be significant, leading to a more ambiguous constellation of symptoms, including fluctuations in vital signs and altered mental status. Hemorrhaging can be either external or internal. External bleeding occurs from a body orifice or a traumatic wound. Internal bleeding requires a high level of clinical suspicion obtained through a thorough history and physical, laboratory tests, imaging, and close monitoring of vital signs. Hemorrhage is a leading cause of potentially preventable death, especially in the acute trauma population.

Etiology

The presentation of hemorrhage varies by anatomic location. After acute trauma, hemorrhage can subdivide into several anatomic areas: external wounds, bleeding within the skull, chest cavity, abdominal cavity, retroperitoneum, and from long bone fractures. Taking a thorough history and physical is the first step in locating the source and etiology of a hemorrhage.

Hemorrhaging within the brain occurs when a vessel is ruptured and bleeds into or around the brain. The signs and symptoms will correlate with the location. The term for any bleeding occurring within the skull is an intracranial hemorrhage; this commonly occurs as a result of chronically elevated blood pressure leading to a weakening of the arterial walls.[1] Symptoms vary ranging from unilateral weakness to headache, nausea, vomiting, and altered mental status. Other causes of intracranial hemorrhage include heavy alcohol use, long term tobacco use, old age, and drug abuse.[2] Trauma is another major contributor to intracranial bleeding. Another type of intracranial bleeding is a subarachnoid hemorrhage (SAH). This type of bleeding occurs due to the rupture of a bridging cortical vein causing blood to accumulate between the delicate arachnoid matter and pia tissue, causing direct irritation to the meninges lining the brain and can result in severe pain. The classic scenario is a patient presenting with the sudden onset of the “worst headache of their life,” otherwise known as a "thunderclap headache." Ruptured aneurysms account for most cases of subarachnoid hemorrhage, but other causes include a traumatic head injury or arteriovenous malformations.[3] Additional types of intracranial bleeding include intraparenchymal hemorrhage, subdural hematoma, and epidural hematoma. Patients may present with more than one type of intracranial bleed, especially after trauma.

Bleeding in the pleural cavity of the chest is called hemothorax. Blood enters a small space between the visceral and parietal pleura, causing the buildup of blood to interfere with the normal lung expansion, ultimately affecting the transfer of oxygen and carbon dioxide between alveoli and blood. This type of breed commonly presents in traumatic injuries, metastatic cancer, blood clotting disorders, or rarely spontaneously. Symptoms include dizziness, shortness of breath, and chest pain. If bleeding continues unabated, this can result in shock or even death. If the pressure builds within the chest and affects the cardiac return of blood, this is known as a tension hemothorax, and this too can result in death if not treated promptly.  

Traumatic blood loss in the abdomen requires a high degree of clinical suspicion. If present, symptoms can be nonspecific and usually require imaging for diagnosis. Symptoms include abdominal pain, hematemesis, hematuria, melena, and bruising, amongst others. More severe bleeding can result in hemorrhagic shock and even death. Common sources of hemorrhage include organ damage (hepatic, splenic, renal, adrenal), vascular injury, gynecologic/obstetric procedure complications, or coagulopathies. Ectopic pregnancy and cyst rupture are two common causes of an abdominal hemorrhage in a woman of childbearing age.[4]

The retroperitoneum contains visceral and vascular structures and is susceptible to injury in abdominal or pelvic injuries. The types of hematomas that develop divide into anatomic zones. Zone 1 is in a central location and damage here includes pancreaticoduodenal injuries or major blood vessels such as the renal artery or aorta. Zone 2 involves the flanks and peri-nephric regions, including the colon. Zone 3 is the pelvic zone. An injury here is common with a pelvic fracture or femoral vascular access injuries.[5] Signs and symptoms include abdominal pain, back pain, flank pain, urinary symptoms if compressing the bladder, and femoral nerve palsy. Unique physical exam findings related to the retroperitoneum include Grey Turner sign (bruising on the flanks).

Bone fractures can lead to dangerously fast life-threatening hemorrhaging. The center of the long bones contains the bone marrow where the red blood cells are made and contain many arteries. The most vascular bones include the long bones: humerus, radius, ulna, femur, fibula, pelvis, and vertebrae.[6] For example, the thigh can hold up to 1 to 2 liters of blood. Trauma to blood vessels outside of the bone, but coursing with it anatomically, can also result in significant hemorrhage if they are injured. Hemorrhage can occur as a result of either a traumatic injury or during surgical repair.

Epidemiology

In Americans up to age 46, hemorrhage secondary to trauma is the leading cause of death.[7] The etiology of hemorrhage is diverse and varies by lifestyle and socioeconomic background. In 2000, the World Health Organization estimated that injury was responsible for 9% of the global mortality, and worldwide, it comprised 12% of the disease burden.[8] Approximately 90% of injuries occur in low and middle-income nations. Traffic accidents and violence contribute to high rates of fatal hemorrhages.[9]

Pathophysiology

In a healthy adult, there is an average of 4.5-5.5 liters or 70-90 ml/kg of blood circulating at any given time. Most adults can tolerate losing up to 14% of their blood volume without physical symptoms or deviations in their vital signs. The severity of hemorrhage divides into a class system organized by percent of blood volume loss. Up to 15% blood volume loss classifies as a Class I hemorrhage. The patient is generally asymptomatic, and vital signs are within normal limits. Class II hemorrhage is a loss of 15 to 30% of total blood volume. Common manifestations include complaints of nausea and fatigue. On physical exam, there will be pallor and cooling of the extremities. Vital signs will start to deviate from normal, tachycardia being the first vital sign to increase (100 to 120 beats per minute), which is followed by an increased respiratory rate (20-24 breaths per minute). Class III hemorrhage is 30 to 40% of total blood volume loss. Common manifestations include delayed capillary refill (greater than two seconds) and changes in mental status. Drastic blood pressure deviations (less than 90 mmHg) are generally not seen until 30% of the blood volume is lost. Vital signs may reflect a systolic less than 90 mmHg or 20 to 30% of original measurement; HR is greater than 120, changes in mental status, and narrow pulse pressure (less than 25 mmHg). These changes represent the body attempting to maintain perfusion to the vital organs by constricting peripheral blood vessels. Class IV hemorrhage is defined as greater than 40% total blood volume loss. There is commonly a lack of urine output, absent peripheral pulses, and further deviations in vital signs. Severe hemorrhaging can lead to shock, which occurs when the blood loss becomes significant enough that it is unable to meet the oxygen demands of the tissue. Cellular aerobic metabolism shuts down, and anaerobic metabolism begins, leading to the production of lactic acid and ultimately a metabolic acidosis.[10] The risk is very high for organ failure, coma, and death absent the timely implementation of life-saving interventions.

History and Physical

History and physical exam are essential in the pursuit of a source of hemorrhage. Information regarding the history of present illness, including mechanism of injury if traumatic, may help the health care provider start to narrow in on a site(s) of hemorrhage. The traditional teaching in the evaluation of a trauma patient includes the primary and secondary survey. One of the key components of the initial survey is "C," which stands for circulation. This evaluation includes both an assessment, and where feasible, an attempt to control significant hemorrhage. When evaluating after trauma, the health care provider should remember there are five areas where a patient can have a potentially life-threatening hemorrhage: externally, the thorax, the abdomen, retroperitoneum, the pelvis, and the thighs.

Important history to obtain in a patient with concerns for hemorrhage include the use of any anticoagulant or antiplatelet medications, history of any bleeding diathesis, or recent trauma or procedures. Gastrointestinal hemorrhage may be difficult to identify a source without further imaging or procedure, but a good history is essential, and a thorough physical exam can lead to clues as to the source of hemorrhage.

Intracranial hemorrhage evaluation should also start with a thorough history and physical exam. Often this can lead a provider to suspect a specific etiology or type of bleed, but imaging is often necessary to confirm these suspicions.

Evaluation

Aside from a thorough history and physical, the workup will likely require imaging and laboratory tests. For a bleed in the skull, a prompt non-contrast CT scan is necessary within six hours of onset for best outcomes.[11] MRI is considered to be more sensitive as time passes the six-hour threshold.[12] A lumbar puncture is another useful diagnostic test as it can reveal the presence of RBCs in the CSF, or xanthochromia indicating hemorrhage.

For bleeding in the chest, diagnosis is aided using a chest X-ray, ultrasound, or CT scan depending on the available resources (and the patient's clinical stability). Hemodynamically unstable patients should not be moved to a diagnostic area for evaluation. Bedside procedures such as chest X-ray and/or ultrasound can help make a diagnosis of a significant hemothorax without moving the patient to a more uncontrolled area such as is often required for advanced imaging like CT scan.  A fluid analysis will definitively diagnose the presence of blood from other forms of fluid. Treatment includes placement of a chest tube for drainage and possible surgical exploration if there is greater than 1500 mL output initially or greater than 200 mL per hour after initial placement.

Especially in the setting of shock secondary to abdominal bleeding, the use of a CT scan, and the focused assessment with sonography for trauma (FAST Scan) are indicated.[13][14] A FAST is a highly reliable noninvasive diagnostic test available at the bedside. For example, it can be used to assess for an abdominal aortic aneurysm in a patient with concerning symptoms.[15] Indications for surgical intervention in those with suspected abdominal bleeding include peritoneal signs, clinical deterioration, hemodynamic instability, and a positive FAST exam. Patients with hemodynamic stability should undergo less invasive methods of imaging before surgical intervention as indicated. Retroperitoneal bleeds can undergo an evaluation with a CT scan and ultrasound.[5]

Evaluation of bleeding from an anatomic orifice often relies on endoscopy of the area of concern, which may include, but not limited to, bronchoscopy, cystoscopy, colonoscopy, or esophagogastroduodenoscopy (EGD).

Treatment / Management

The management of hemorrhage will vary based on anatomic location, the extent of the injury, patient presentation, and the resources available. Resuscitation with IV fluids is necessary if the patient is demonstrating signs of hypovolemia. Basic fluid resuscitation is by placing two large bore IVs, infusing normal saline or lactated ringer and beginning transfusion protocol. Blood product administration should be in equivalent amounts (1:1:1 PRBCs, FFP, platelets) and transfused as needed. Patients receiving transfusions should have monitoring for hypothermia. Goals of treatment are to restore intravascular volume and to maintain oxygen delivery until the source of bleeding can be resolved. Target mean arterial pressure (MAP) is a pressure greater than 65mmHg. For penetrating trauma, a systolic blood pressure goal is greater than 90mmHg. For brain injuries, the goal MAP is 105 mmHg or higher, and SBP greater than 120 mmHg.[16] It is also essential to monitor lactic acid production, and worsening metabolic acidosis as this can lead to loss of the peripheral vasoconstriction and cardiovascular collapse. For traumatic external wounds, direct pressure and placement of tourniquets proximal to the source of the hemorrhage can be life-saving interventions. 

Differential Diagnosis

Prompt detection of a bleed requires an astute clinician. A thorough history and physical will raise suspicion and requires timely intervention. Some forms of hemorrhage will present due to hypovolemia, and this can result in hypovolemic shock. Care must be taken to distinguish this entity from other etiologies of shock. Other bleeds, such as those in the brain, have very little room for the excess blood to accumulate before pressures rise and evoke mental status and neurological changes. Other differentials to consider are migraine headaches, meningitis/encephalitis, tumor, electrolyte abnormalities, stroke, myocardial infarction, intoxication/poisoning, to name a few.

Prognosis

Prognosis is dependent upon early detection and timely intervention. Mortality in traumatic wounds leading to hemorrhagic shock is high. The role of the physician is to maintain oxygen delivery, control the bleeding, and limit tissue hypoxia.[17] 

Complications

Complications of hemorrhage occur as a result of decreased blood flow to organs and ultimately, tissue hypoxia; this can lead to organ failure, seizures, coma, and death. When the brain is deprived of oxygen for prolonged periods, it can result in tissue infarct that often leads to long term neurological and cognitive dysfunction. In particular, subarachnoid hemorrhaging can lead to vasospasms in the blood vessels during the weeks following a bleed and result in a stroke.[7] Other generalized complications include re-bleeding and complications related to hospitalization, including DVT and infection.[18]

Deterrence and Patient Education

Following a hemorrhage, patients need education on what to expect in their recovery and how to avoid future recurrence. Studies have found that survivors often do not reach their rehabilitation goals and report a lack of accessibility to resources. Before discharge, patients should have discussions with the healthcare team on the goals for rehabilitation and how they can seek support during their recovery. Patients and their families also need education on what to realistically expect in the recovery process. Providing access to social and financial support can help manage the stressors that arise.

Enhancing Healthcare Team Outcomes

Uncontrolled hemorrhage remains a leading cause of death and is potentially preventable. Patient outcomes are largely dependent on timely and appropriate interventions. Currently, there is no widely approved educational tool available to train healthcare personnel in the workplace. an interprofessional team that includes nurses is essential in the management of patients with hemorrhage. A recent study published in "The Forgotten Survivor" (Jones, 2006) showed that a hospital-wide basic learning module on recognizing hemorrhage was effective in helping healthcare workers feel more prepared to assist in hemorrhage management.[19]

Hemorrhage management requires an interprofessional team approach, including physicians, specialists, specialty-trained nurses, and pharmacists, all collaborating across disciplines to achieve optimal patient results. [Level V]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hemorrhage - Questions

Take a quiz of the questions on this article.

Take Quiz
An 87-year-old man with a significant past medical history of COPD, atrial fibrillation and diverticulosis, presents to the emergency department with 3 days of dark tarry stools. He states he has felt lightheaded and fatigued to the point he is afraid he will pass out walking from the bedroom to the bathroom, prompting EMS call. He has not lost consciousness. On physical examination, there is tenderness in the left upper quadrant without any rebound or guarding. Stool guaiac test is positive. Vital signs reflect the temperature of 101F, heart rate of 102/min, blood pressure of 100/68 mmHg, and respiratory rate of 12/min. Which of the following is an endocrine response to bleeding that is seen in the kidney?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 19-year-old male is brought in to the ED due to a stab wound to the right side of his chest. The patient was attempting to help his friend, who was being mugged. During EMS transport, he became unresponsive. He was intubated, and IV fluids were initiated. On arrival, his blood pressure is 82/68 mmHg, heart rate of 120/min, and is 98% on 60% oxygen. A 4 cm laceration is noted in the right 4th intercostal space midaxillary line. Breath sounds are diminished. The patient is also tachycardic, but no murmurs noted. The abdomen is non-distended without any apparent injuries. A positive FAST is found, and a chest tube is placed on the right side. There is 1800mL immediate output of blood. What should be the next step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 27-year-old male patient presents to the ED after sustaining a knife wound to the left upper thigh after being involved in an attempted robbery. On arrival, although the bleeding has been controlled, yet there has been approximately 1500ml blood loss. The patient is pale and is responding only to painful stimuli. Vital signs reflect a temperature of 99F, heart rate of 130/min, blood pressure of 90/60 mmHg, and respiratory rate of 9/min. IV fluids and transfusion protocol are initiated. Which of the following is the primary reflexive mechanism employed in response to hypotension?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 75-year-old female with unknown PMH is brought into the ED via EMS after she was found down in her home by a neighbor. There is an obvious deformity of the right femur. She is minimally responsive to painful stimuli and appears pale. Vital signs reflect a temperature of 99.0F, heart rate of 114/min, respirations of 8/min and blood pressure of 86/66 mmHg. The pulses in the lower extremities are weak but palpable. Which of the following classes of hemorrhage most closely correlates with this presentation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 36-year-old male is brought to the ED after he accidentally shot his left thigh while cleaning his gun at home. He is awake, alert, and oriented and responds to all questions. On physical examination, there is a gunshot entry wound in the left upper medial thigh with no sign of exit wound. There is purple discoloring of the overlying skin and light bleeding from the entry wound despite compression. The extremity is cool to the touch, and distal pulses are not palpable. Vital signs reflect 106/54 mmHg and heart rate of 120/min. Bedside radiography reveals no sign of fracture. What is the next best step in the care of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 65-year-old female is brought to the emergency department in severe distress after being involved in an MVC. He is alert and responds to questions but is complaining of severe abdominal pain. On physical examination, there are apparent bruising and abrasions across the lower abdomen and chest. Her abdomen is exquisitely tender to palpation. Vital signs reflect a temperature of 98F, heart rate 122/min, blood pressure 90/68 mmHg. The FAST scan is positive. CT scan reveals a splenic laceration. Which of the following is a physiological response to hemorrhage occurring in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 16-year-old male comes to your clinic with a scalp laceration after falling off his skateboard. He did not lose consciousness. He has no medical problems and takes no regular medications. He is alert, oriented and responds appropriately to questions. He appears slightly pale and complains of lightheadedness. His vital signs reflect the temperature of 98F, heart rate of 114/min, blood pressure of 102/76mmHg and respirations of 14/min. What class hemorrhage is most likely represented by this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Several hours after a laparoscopic cholecystectomy, a 55-year-old client is assessed by a nurse in the medical-surgical unit. The nurse notes that the client's abdomen is distended, and the client is complaining of 9/10 abdominal pain. If this client is bleeding inside the abdomen, the client also may present with which of the following? Select all that apply.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 40-year-old patient presents to the emergency department after a motor vehicle collision. He is awake, able to protect his airway, and his vital signs are stable. Upon examination, he is bleeding profusely from his thigh. His hemoglobin is 10 g/dL. What is the next step in management?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 16-year-old male presents to the emergency department with a laceration to his right thigh after being cut with a piece of broken glass. He has attempted to bandage the wound, but it continues to bleed through the dressing every 5 minutes. Vital signs show a heart rate of 110 bpm, blood pressure 120/72 mmHg, respiratory rate of 14/min, and temperature 98.0 F. Which of the following best identifies the class of the patient's hemorrhage?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 19-year-old female comes to the clinic with a 2-day history of severe cramping lower abdominal pain and vaginal bleeding. The pain is progressively getting worse. Her last menstrual cycle ended eight weeks ago. Her cycle is consistently every 28 days and lasts approximately five days with moderate bleeding. She has no past medical history and takes no daily medications. She denies drug and alcohol use. Beta-hCG is positive. Her vital signs reflect a temperature of 98.0 F, blood pressure 82/60 mmHg, a pulse of 120/min and respirations of 14/min. There is moderate left adnexal tenderness. There is blood in the vaginal vault, but the cervical os is closed. Transabdominal ultrasound does not locate an intrauterine gestation. Which of the following is the next best step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 67-year-old male with a history of hypertension, hyperlipidemia, and 40-pack-year smoking comes to the emergency department with sudden onset, severe abdominal pain, and severe generalized weakness. Vital signs reflect a temperature of 99.1 F, blood pressure of 102/82 mmHg, a regular pulse of 110 bpm and respirations of 20/min. On physical exam, there is generalized abdominal tenderness, a pulsating mass in the epigastric region, and ecchymosis of the flanks. Which of the following is the next best step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An otherwise healthy male presents to the clinic after donating blood, complaining of lightheadedness and nausea. This was his first time donating blood and is worried he is having a bad reaction. Vital signs reveal a temperature of 98.0 F, blood pressure 118/72 mmHg, a pulse of 108/min and respirations 18/min. He has 2+ pulses in all extremities and is warm to the touch. Lungs are clear to auscultation. Neuro exam is unremarkable. His weight is 82 kgs. He was informed he donated 1.5 liters of blood at the drive. Which of the following best identifies the class of the patient's hemorrhage?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hemorrhage - References

References

Lee SU,Kim T,Kwon OK,Bang JS,Ban SP,Byoun HS,Oh CW, Trends in the Incidence and Treatment of Cerebrovascular Diseases in Korea : Part I. Intracranial Aneurysm, Intracerebral Hemorrhage, and Arteriovenous Malformation. Journal of Korean Neurosurgical Society. 2019 May 8;     [PubMed]
Gross BA,Jankowitz BT,Friedlander RM, Cerebral Intraparenchymal Hemorrhage: A Review. JAMA. 2019 Apr 2;     [PubMed]
Agarwal S,Zhou T,Frontera J, Journal Club: Association between aspirin dose and subarachnoid hemorrhage from saccular aneurysms: A case-control study. Neurology. 2019 May 7;     [PubMed]
Pontius E,Vieth JT, Complications in Early Pregnancy. Emergency medicine clinics of North America. 2019 May;     [PubMed]
Baekgaard JS,Eskesen TG,Lee JM,Yeh DD,Kaafarani HMA,Fagenholz PJ,Avery L,Saillant N,King DR,Velmahos GC, Spontaneous Retroperitoneal and Rectus Sheath Hemorrhage-Management, Risk Factors and Outcomes. World journal of surgery. 2019 Apr 8;     [PubMed]
Lazarev A,Golokhvast K,Borozda I, Review of the Problems of Diagnosis of Endopelvic Haemorrhage, Its Intensity, Volume, and Duration, and Treatment Methods of Circulatory Injuries and Surgical Hemostasis after Pelvic Fractures. Emergency medicine international. 2019;     [PubMed]
Carmichael H,Steward L,Peltz ED,Wright FL,Velopulos CG, Preventable death and interpersonal violence in the United States: who can be saved? The journal of trauma and acute care surgery. 2019 Apr 26;     [PubMed]
Foucher CD,Tubben RE, Lactic Acidosis 2019 Jan;     [PubMed]
Mackenzie MJ,Hiranandani R,Wang D,Fung T,Lang E, Determinants of Computed Tomography Head Scan Ordering for Patients with Low-Risk Headache in the Emergency Department. Cureus. 2017 Oct 9;     [PubMed]
Kim du S,Kong MH,Jang SY,Kim JH,Kang DS,Song KY, The usefulness of brain magnetic resonance imaging with mild head injury and the negative findings of brain computed tomography. Journal of Korean Neurosurgical Society. 2013 Aug;     [PubMed]
Aboudara M,Maldonado F, Update in the Management of Pleural Effusions. The Medical clinics of North America. 2019 May;     [PubMed]
Nixon G,Blattner K,Muirhead J,Finnie W,Lawrenson R,Kerse N, Scope of point-of-care ultrasound practice in rural New Zealand. Journal of primary health care. 2018 Oct;     [PubMed]
Vulliamy P,Thaventhiran AJ,Davenport RA, What's new for trauma haemorrhage management? British journal of hospital medicine (London, England : 2005). 2019 May 2;     [PubMed]
Palmer L, Fluid Management in Patients with Trauma: Restrictive Versus Liberal Approach. The Veterinary clinics of North America. Small animal practice. 2017 Mar;     [PubMed]
Matano F,Fujiki Y,Mizunari T,Koketsu K,Tamaki T,Murai Y,Yokota H,Morita A, Serum Glucose and Potassium Ratio as Risk Factors for Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2019 May 3;     [PubMed]
Dhakal P,Wang L,Gardiner J,Shrotriya S,Sharma M,Rayamajhi S, Effectiveness of Sequential Compression Devices in Prevention of Venous Thromboembolism in Medically Ill Hospitalized Patients: A Retrospective Cohort Study Turkish journal of haematology : official journal of Turkish Society of Haematology. 2019 May 1;     [PubMed]
Kauvar DS,Lefering R,Wade CE, Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. The Journal of trauma. 2006 Jun;     [PubMed]
Hegvik JR,Spilman SK,Olson SD,Gilchrist CA,Sidwell RA, Effective Hospital-Wide Education in Hemorrhage Control. Journal of the American College of Surgeons. 2017 May;     [PubMed]
Rubano E,Mehta N,Caputo W,Paladino L,Sinert R, Systematic review: emergency department bedside ultrasonography for diagnosing suspected abdominal aortic aneurysm. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 2013 Feb;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Corrections (CCN). The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Corrections (CCN), it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Corrections (CCN), you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Corrections (CCN). When it is time for the Nurse-Corrections (CCN) board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Corrections (CCN).