Epidemiology Morbidity And Mortality


Article Author:
Jose Bien Hernandez


Article Editor:
Peggy Kim


Editors In Chief:
Casey Ciresi


Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon


Updated:
9/18/2019 3:59:57 PM

Definition/Introduction

From an etymological perspective, the word “epidemiology” can be divided into the Greek roots "epi," "demos," and "logos" which respectively mean "upon," "people," and "the study of." Historically, epidemiology has focused on population-level factors regarding communicable infectious disease, but it has evolved to include non-communicable infectious diseases, chronic diseases, infant health, and environmental and behavioral health. Today, it is a wide-encapsulating umbrella that encompasses any health-related issues that may influence the overall health of a population such as environmental exposures, injuries, natural disasters, and terrorism, to name a few. It is a multifaceted branch of medicine, fundamentally guided by systematic scientific inquiry via ratios, probabilities and other statistical calculations, focusing on the incidence, distribution, and factors concerning diseases and health outcomes within a specific population.

Epidemiologists work in conjunction with other health professionals to study patterns, mediums of transmission, or determinants of a specific health event within a particular population. They also work proactively to learn about diseases not previously studied, such as Legionnaire disease and severe acute respiratory syndrome (SARS). For example, the World Health Organization (WHO) met in Geneva, Switzerland, in 2003 to discuss the epidemiology of SARS and learn about the disease's risk factors, mediums of transmission, and reservoirs. These proactive studies better equip health professionals with the knowledge necessary for a robust response in case a health-related event occurs, and in these cases, a disease outbreak. Other notable instances in which epidemiologists have played a role include historical, biological warfares, the eradication of smallpox, relief efforts to victims of hurricanes and terrorist attacks, and most recently, Ebola and Zika virus outbreaks. When responding to these health events, epidemiologists utilize previously collected, analyzed, and verified data to create, advise on, and implement informed and targeted solutions to monitor and prevent the occurrence, worsening or recurrence of population-level health-related events. Epidemiologists play an integral part in the maintenance of the overall health and wellness of many specific populations.

Lastly, the field of epidemiology works continuously with public health surveillance, creating a system in which patterns and health outcomes of health-related events undergo continuous monitoring; this is especially important in the fields of medicine focusing on upstream factors and preventative health issues. Legionnaire disease, for example, was surveilled by the Chinese Center for Disease Control and Prevention in 18 Chinese hospitals between 2014 to 2016. This study showed correlational data identifying cities, gender, age group, and seasons with the highest prevalence rates. It also identified L. pneumophila as the pathogen of interest in pneumonia-causing Legionnaire disease in China. The team acknowledged China's lack of Legionnaire disease reporting and suggested the establishment of routine diagnostic methods to decrease the likelihood of misdiagnoses and underreporting.[1]

Two measures commonly used for epidemiological surveillance are morbidity and mortality. These measures describe the progression and severity of a given health event. They are useful tools to learn about risk factors of diseases, as well as to compare and contrast between health events and between different populations. While similar and often related, morbidity and mortality, however, are not identical. Morbidity is the state of being symptomatic or unhealthy for a disease or condition. It is usually represented or estimated using prevalence or incidence. Prevalence describes the proportion of the population with a given symptom or quality. It is calculated by dividing the number of affected individuals by the total number of individuals within a specific population. It is usually presented as a ratio or as a percentage. Incidence, on the other hand, shows the frequency at which individuals within a specific population develop a given symptom or quality. It is calculated by dividing the number of NEW cases within a designated, particular period by the number of individuals within the population. When making this calculation, it is essential to remember to subtract the number of individuals who are already affected by the total number of individuals within a population.

Mortality, on the other hand, is related to the number of deaths caused by the health event under investigation. It can be communicated as a rate or as an absolute number. Mortality usually gets represented as a rate per 1000 individuals, also called the death rate. The calculation for this rate is to divide the number of deaths in a given time for a given population by the total population. To keep these values concise and for ease of comparison to other health events, this number can be multiplied by 1000 to reflect the "per 1000" rate of the target population.

Morbidity and mortality are two types of retrospective information that allows for continuous evaluation of the efficacy of either a specific health care system or an implemented intervention in place. For example, the use of maternal morbidity and mortality to gauge the risks of pregnancy and childbirth, as well as the efficacy of the health care they receive are of vital importance.[2] In a related vein, accurate assessment of these measures are crucial to understanding and evaluating their impact and trajectory. Ultimately, mortality alongside morbidity allows epidemiologists to study further the burdens that a health event may place on a population. These metrics also allow stakeholders to more effectively prioritize which health events to tackle and to allocate resources toward as well as proactively manage the potential onset of a health event.

Issues of Concern

Epidemiology has undoubtedly been a critical player in the continued wellness of today's society. There are, however, some potential concerns with this discipline, namely in the application or misuse of epidemiological data. Information intended to help make informed decisions, prepare for future adverse health events, or advance the knowledge of the general population can be otherwise used for propaganda or scare tactics, especially in today's heavily connected society. The knowledge of laypeople can be taken advantage of by using excerpts from research papers taken out of context. For example, during the Ebola outbreak, early communication characterized the ensuing effort as lacking preparation, while later communication was mired in government mistrust.[3] During the outbreak, one of the avenues of communication that the Centers for Disease Control and Prevention used was Twitter.[4] While the original intention was to increase transparency and rapidly provide the public with information about the outbreak, it instead increased the likelihood of acting on data that had not been fully verified. This situation is especially true during disease outbreaks when information regarding its determinants may not be immediately peer-reviewed.[5] Information of varying reliability and quality then leads to the potential of spreading unnecessary terror or panic that may or may not be remediable by expert opinions.

Misinformation or incomplete information can also complicate the interpretation and application of epidemiological research. Morbidity and mortality face many challenges similar to other population-based statistical measures. These include language barriers, variations in methodologies and definitions, and sampling and reporting biases.[2][6][7][8] Often, morbidity and mortality rely on census data for their calculations, but this data is not always available, especially in less developed countries or those affected by humanitarian crises or natural disasters.[8] 

Government mistrust can also play a role in the formulation of inaccuracies. For example, research has shown that about 40% of the undocumented Latino immigrants in the United States report a fear of accessing care due to concerns about being deported which are only made worse by the limited health services and financial resources to which undocumented immigrants legally have access.[9][10] These factors possess the potential to affect the accurate reporting of morbidity and mortality rates adversely, while the health event progressively becomes underreported. Ultimately, it is the cumulation of the inaccuracies mentioned above that can manifest as ill-advised decisions or interventions for health-related events. If data is not available from a census, other means of data collection should be employed. Their advantages and disadvantages merit consideration, and their limitations require immediate action. The anticipation of foreseeable pitfalls, sound study designs, and effective countermeasures need to be in place to garner the most accurate picture of the health event and population in focus.

Furthermore, continued education from epidemiologists needs to be a priority. Through educational activism, epidemiologists can present their research and equip their audiences with the necessary background information to effectively understand and apply the epidemiology of a health event. Educational interactions also provide an opportunity for epidemiologists to qualify their claims as well as the limitations of a study. This approach ultimately ensures that the data produced is utilized in its intended manner. Continued educational activism not only empowers the general population, but it also keeps organizations, people in power, and other epidemiologists in check. In fact, within the epidemiology department of CDC, their epidemic intelligence service (EIS), is not only responsible for research, field investigation, and surveillance, but also education via presentations on complex scientific topics, writing peer-reviewed journals and updating public health information.

Clinical Significance

Epidemiology can be broken down into two types: descriptive and analytic. Typically, descriptive epidemiology precedes analytic epidemiology. Descriptive epidemiology aims to develop foundational knowledge regarding the health event in focus. This data can include rates of occurrences, populations affected, timing, and geographic-specific presentations of a health event. By studying population-specific characteristics, epidemiologists can start learning about the natural history, modes of transmission, risk factors, and even disparities of a health event that is present within a community. Descriptive epidemiology also utilizes information from continuous public health surveillance and ultimately initiates the process of developing hypotheses and directing field investigations to develop effective and informed analytic studies. For example, in a breast cancer study, incidence and prevalence rates may be observed in different countries and in different age groups to learn about its etiologies, risk factors, and potential preventative measures.[11]

Analytic epidemiology, on the other hand, builds from descriptive epidemiology. As hypotheses arise in descriptive epidemiology, analytic epidemiology aims to test its validity. It seeks to uncover potential associations and any other contributors between factors and outcomes with the use of a control group. This hypothesis testing is possible via experimentation or observation. Experimental studies usually involve clinical trials within a controlled process; this includes the use of randomization procedures, implementations of placebos, and counterbalancing measures to counteract any potential confounding variables or bias. The overarching goal of experimental studies is to establish a causal relationship between an exposure and an outcome. For example, in a parasitic infection study, the exposure would be the parasites, and the outcome would be host survival or host extinction.[12]

Observational studies, on the other hand, simply detect the onset of an outcome between those exposed and those not exposed, as well as any potentially related variables, with the hopes of determining associations. There are three types of observational studies: cohort, case-control, and cross-sectional. Cohort studies observe both exposed and non-exposed individuals and record the number of outcomes between the two groups over a designated amount of time. In these observations, if the outcomes are higher in those exposed than non-exposed (control), then an association can be inferred. For example, in a study of obesity risk factors, over 8000 children were followed until 7 years of age. The primary outcome observed was the development of obesity (BMI over the 95th percentile). In this study, risk factors associated with an increased likelihood of developing obesity were found to include: parental obesity, early body mass index rebound, more than eight hours watching television per week at age three, catch-up growth, short sleep duration, and weight gain in the first year.[13]

Case-control studies, on the other hand, involve a more retrospective approach, wherein the rates of exposures in individuals who present with the outcome get compared with those that do not (control). In these observations, if there are more individuals exposed who also have the outcome of interest, then an association can be inferred. For example, in a study of running-related injuries, it was found that people with less than 8.5 years of activity level and women with a BMI less than 21 kg/m^2  were at a higher likelihood of developing tibial injuries.[14]

Lastly, cross-sectional studies focus more on a specific time-point rather than a more extended period, leading to data showing the prevalence or incidence of an outcome after an exposure. This format, however, does not offer as much information as the first two types of observational studies and is usually better suited when focusing on the descriptive epidemiology of a larger population. For example, in a study of medical student mental health, students in their first, third, and sixth years of education were surveyed. The study showed that first-year students identified workload and lack of feedback as stressors, third-year students identified "competence worries" as a stressor, and sixth-year students rated lack of support as a stressor.[15] Ultimately, it is through the combination of these analytic studies that direct epidemiologists' decision-making and responses to public health issues or involvement in policy development and law-making. By knowing these factors, interventions can be highly targeted, and the potential for unintended consequences can be limited or completely avoided.

Interventions are also monitored during implementation and evaluated for efficacy, efficiency, impact, cost-effectiveness, and potential for improvement. Two important outcome measures are morbidity and mortality. Changes within these two measures can indicate not only the severity of a health event but also serve as one of the litmus tests for the responses that epidemiologists may take. Morbidity and mortality measures can be gathered using either descriptive or analytic epidemiology and can undergo stratification into various subcategories, such as perinatal, neonatal, infant, and maternal morbidity mortalities, to name a few. Morbidity and mortality can also be stratified by age, race,  ethnicity, sex/gender, nationality, and socioeconomic status, which provide an opportunity to uncover group-specific susceptibilities or exposures within a population. These subcategories provide great insight not only into the health of the population but also highlight any group that may be disproportionately affected. For example, a review of infant mortality in the United States from 1950 to 2010 showed that while infant mortality has substantially decreased in the past four decades, the disparity between African Americans and Whites have progressively increased, further worsened by educational and income inequities.[16] Other disparities uncovered include the indirect relationship between socioeconomic status and cancer mortalities,[17] the prevalence of asthma morbidities in inner-city areas,[18] and the unethical targeting of smoking advertisements in low-income schools.[19] It is by using these types of information that stakeholders of a community or population can make better decisions on the type, target, order, and scope of an intervention to pursue, ultimately allowing for communities to properly allocate their time, money, and other resources toward the most impactful and cost-effective interventions.

Nursing Actions and Interventions

Nurses need to be aware of research study methodology and what their outcomes mean. Nurses also play a vital role in infection prevention and patient education.

Nursing Monitoring

When epidemics occur, nurses are the key staff who look after patients. Thus, nurses must be fully aware of modes of disease transmission and how to limit spread to others.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Epidemiology Morbidity And Mortality - Questions

Take a quiz of the questions on this article.

Take Quiz
A city with a population of 200,000 is comprised of 50,000 undocumented immigrants. With limited access to healthcare services or financial resources, this population disproportionately suffers from heart-related diseases. Within the past year, 250 undocumented immigrants died from a heart-related disease. What is the mortality rate (per 1000 individuals) of heart-related diseases with respect to the whole population and the undocumented immigrant population in the past year?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A city with a population of 500,000 is comprised of 5000 individuals with a history of type 1 or type 2 diabetes. Of the individuals with a history of type 1 or type 2 diabetes, 250 were found to develop type 1 diabetes, and 100 were found to develop type 2 diabetes. What are the prevalence rates of type 1 and type 2 diabetes within individuals with a history of diabetes?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A city with a population of 30,000 is comprised of 250 African American individuals. In the first year of public epidemiological surveillance, 50 African American individuals were observed with sickle cell anemia. In the following year, 40 additional cases of sickle cell anemia were recorded. In the third and final year of data collection, another 10 cases of sickle cell anemia were recorded. What is the difference between the incidence rates of sickle cell anemia within the African American population (absolute percentage difference) between the second and third years of epidemiological public health surveillance?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An epidemiologist is provided with a group of volunteers (ages 25-30 years old) who have experienced brain injury in the past. Half of the volunteers were in automobile accidents, and the other half were involved in sports-related collisions. Some patients are starting to experience symptoms of memory loss and confusion, but all are highly functional. The epidemiologist is interested in learning if the aforementioned accidents and injuries can lead to dementia in elderly adults. What type of study would be most appropriate for this epidemiologist to employ?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An epidemiologist wishes to study factors that influence mortality in patients with carcinoid tumors, which have an incidence in the United States of 27 new cases diagnosed per one million people. What type of study design would be the most appropriate to study this rare condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The prevalence rate for the morbidity of a particular tick-borne illness of interest is 3.5%. The incidence rate of morbidity from this disease was 6% last year and is 5% this year. Which of the following interpretations of these findings is the most accurate?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Epidemiology Morbidity And Mortality - References

References

Qin T,Ren H,Chen D,Zhou H,Jiang L,Wu D,Shen J,Pei F, National Surveillance of Legionnaires' Disease, China, 2014-2016. Emerging infectious diseases. 2019 Jun;     [PubMed]
Gülmezoglu AM,Say L,Betrán AP,Villar J,Piaggio G, WHO systematic review of maternal mortality and morbidity: methodological issues and challenges. BMC medical research methodology. 2004 Jul 5;     [PubMed]
Love CB,Arnesen SJ,Phillips SJ, Ebola outbreak response: the role of information resources and the National Library of Medicine. Disaster medicine and public health preparedness. 2015 Feb;     [PubMed]
Islam NS,Khan S,Kwon S,Jang D,Ro M,Trinh-Shevrin C, Methodological issues in the collection, analysis, and reporting of granular data in Asian American populations: historical challenges and potential solutions. Journal of health care for the poor and underserved. 2010 Nov;     [PubMed]
Hau A,Wegener E,Ignjatovic V,Revel-Vilk S,Monagle P, Family history of venous thromboembolism in the paediatric population: The need for a standardized definition. Thrombosis research. 2019 Jan;     [PubMed]
Morgan SA,Ali MM, A review of methodology and tools for measuring maternal mortality in humanitarian settings. Health policy and planning. 2018 Dec 1;     [PubMed]
Berk ML,Schur CL, The effect of fear on access to care among undocumented Latino immigrants. Journal of immigrant health. 2001 Jul;     [PubMed]
Kelsey JL,Horn-Ross PL, Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiologic reviews. 1993;     [PubMed]
Ebert D,Lipsitch M,Mangin KL, The Effect of Parasites on Host Population Density and Extinction: Experimental Epidemiology with Daphnia and Six Microparasites. The American naturalist. 2000 Nov;     [PubMed]
Bernhardsen GP,Stensrud T,Nystad W,Dalene KE,Kolle E,Ekelund U, Early life risk factors for childhood obesity-does physical activity modify the associations? The MoBa Cohort Study. Scandinavian journal of medicine     [PubMed]
Taunton JE,Ryan MB,Clement DB,McKenzie DC,Lloyd-Smith DR,Zumbo BD, A retrospective case-control analysis of 2002 running injuries. British journal of sports medicine. 2002 Apr;     [PubMed]
Dahlin M,Joneborg N,Runeson B, Stress and depression among medical students: a cross-sectional study. Medical education. 2005 Jun;     [PubMed]
Singh GK,Yu SM, Infant mortality in the United States: trends, differentials, and projections, 1950 through 2010. American journal of public health. 1995 Jul;     [PubMed]
Hsu YY,Bai CH,Wang CC,Chen WL,Wu WT,Lai CH, Health Disparities of Employees in Taiwan with Major Cancer Diagnosis from 2004 to 2015: A Nation- and Population-Based Analysis. International journal of environmental research and public health. 2019 Jun 4;     [PubMed]
Rosenstreich DL,Eggleston P,Kattan M,Baker D,Slavin RG,Gergen P,Mitchell H,McNiff-Mortimer K,Lynn H,Ownby D,Malveaux F, The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. The New England journal of medicine. 1997 May 8;     [PubMed]
Henriksen L,Feighery EC,Schleicher NC,Cowling DW,Kline RS,Fortmann SP, Is adolescent smoking related to the density and proximity of tobacco outlets and retail cigarette advertising near schools? Preventive medicine. 2008 Aug;     [PubMed]
Blair RA,Morse BS,Tsai LL, Public health and public trust: Survey evidence from the Ebola Virus Disease epidemic in Liberia. Social science     [PubMed]
Liang H,Fung IC,Tse ZTH,Yin J,Chan CH,Pechta LE,Smith BJ,Marquez-Lameda RD,Meltzer MI,Lubell KM,Fu KW, How did Ebola information spread on twitter: broadcasting or viral spreading? BMC public health. 2019 Apr 25;     [PubMed]
Callaghan T,Washburn DJ,Nimmons K,Duchicela D,Gurram A,Burdine J, Immigrant health access in Texas: policy, rhetoric, and fear in the Trump era. BMC health services research. 2019 Jun 5;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Corrections (CCN). The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Corrections (CCN), it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Corrections (CCN), you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Corrections (CCN). When it is time for the Nurse-Corrections (CCN) board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Corrections (CCN).