Chemical Burns

Article Author:
Tess VanHoy
Michael LeWitt

Article Editor:
Bhupendra Patel

Editors In Chief:
Casey Ciresi

Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon

3/1/2019 8:06:16 AM


Healthcare professionals should understand chemical burns from exposure to acids (pH less than 7), alkalis (pH greater than 7), and irritants to recognize, manage and care for these common types of injury.[1][2][3]


Chemical burns are the result of exposures to a variety of substances commonly found in the home, workplace, and surrounding environment. The burn may be obvious, for example, from a direct spill or other exposure, or more covert, especially in children. Chemical burns can cause short-term, long-term, and lifelong health problems, especially if undertreated. Occasionally, they can result in premature death, especially if ingested in an attempt to self-harm.[4][5]

Common causes of chemical burns include the following:

  • Acids: Sulfuric, nitric, hydrofluoric, hydrochloric, acetic acid, formic, phosphoric, phenols, and chloroacetic acid
  • Bases: Sodium and potassium hydroxide, calcium hydroxide, sodium and calcium hypochlorite, ammonia, phosphates, silicated, sodium carbonate, lithium hydride
  • Oxidants: Bleaches like chlorites used in the home, peroxides, chromates, magnates
  • Miscellaneous: White phosphorus, metals, hair coloring agents, airbag injuries
  • Vesicants like mustard gas


Chemical burns occur commonly in children who explore at their "cruiser" level.  Many households keep toxic chemicals under the sink or in other low-lying locations where a child may access them. Additionally, in the workplace or home environment, an individual may contact one or more chemicals that have the potential to cause external or internal injury, either because of unawareness of exposure or casual contact. [6][7]

In the last few years in the United Kingdom, there have been many caustic chemical assaults on women.

Children tend to suffer chemical injuries in the home; whereas, adults suffer chemical injuries in the workplace.


Chemical burns cause damage as a result of irritant properties, acidity/alkalinity, concentration, form, amount of contact, the length of exposure, and location of contact. For example, contact with a mucosal surface such as the eye is likely to cause earlier and more extensive damage than contact with intact skin where there may be some barrier protection. After inadvertent or intentional ingestion, there will be prompt contact with the mucosal surface and both direct and absorptive toxicity.


After exposure to an alkaline agent, the -OH moiety causes injury due to liquefaction necrosis (mnemonic tip: alkaline has an "L"), which leads to often irreversible changes in the protein matrix. Additionally, there is vascular damage that can create a local or systemic effect.

Acidic agents cause coagulation necrosis (mnemonic tip: acidic has a "C"), which leads to cytotoxicity. Additionally, there are mucosal or skin changes which may prevent further toxicity and limit absorption.

Overall, alkaline agents are more toxic than acidic agents, due to the irreversible changes in protein and tissue damage.

History and Physical

The most common findings represent structural changes to the tissue directly affected, for example, the eye, oral mucosa, skin, esophagus, and lower intestinal system, especially the stomach and pylorus, respiratory system, among others.  In children, ingestion is generally the most worrisome event, because of changes, both short-term and long-term, often leading to extensive tissue death. Eye exposure, either acid or alkali, represents a significant acute injury. Copious irrigation is necessary, and measuring pH is appropriate, although rarely informative.


Direct examination of external exposure sites is mandatory, and if there is ingestion, endoscopic evaluation is necessary. In the instance of Hydrofluoric (HF) acid exposure (see treatment below), monitoring of serum calcium and magnesium levels is critical to prevent chelation with the fluoride ion and cytotoxicity. With most other topical exposures, observation and serial monitoring of changes are sufficient.[8][9]

Any gastrointestinal (GI) exposure must be seen by an experienced endoscopist who may need to perform serial evaluations to document healing. Likewise, eye injuries must be examined by an experienced ophthalmologist who will follow-up with the patient sequentially and guide additional therapy.

With ingestions, especially when concerned about systemic absorption, laboratory evaluation (complete blood count [CBC], platelets, electrolytes, calcium, magnesium, arterial/venous blood gas, liver and kidney studies, lactic acid level, and, occasionally, coagulation studies) may be indicated. Radiographic studies, especially including an upright chest film, may help to determine if there is the presence of free air, which is suggestive of a perforation. Non-contrast CT may be used if there is concern about mediastinal free air, resulting from a perforation after exposure. Previously, a radio-opaque contrast was used, but this should be avoided in suspected perforation.

Treatment / Management

Copious irrigation of affected external areas is mandated. Endoscopic examination best explores internal injuries after ingestion. If there is concern about ingestion of disc or other flat batteries, radiographic assessment is mandated. It would be unusual that CT scanning would be needed, and MRI studies are interdicted. Ultrasonography in experienced hands may provide answers as to location as well.  [10][4][11]

It is not appropriate to introduce emetic agents or "neutralizing" agents into the treatment regimen after ingestion. There is high concern about aspiration, increased tissue damage with retching, and a strong possibility of exacerbating a bad situation. There is no current recommendation of systemic medications such as steroids, antibiotics, or prophylactic renal/hepatic therapies.

HF acid, among all the exposures mentioned above, can be treated with copious irrigation and application of a paste (commercially available and often supplied in an industrial setting where HF may be used commonly or made in the emergency department with powdered calcium gluconate and surgical lubricants). Some have recommended benzalkonium chloride solution. When applied, the treating clinician should use barrier protection. In some circumstances, intradermal or intraarterial injections of calcium (gluconate strongly preferred) have been used. Relief of pain is a good marker of efficacy of treatment. Monitoring of calcium and magnesium levels is important. Oral ingestion, often in the context of suicidal behavior, is likely to be fatal and may be treated with lavage. Monitoring of heart rhythms and electrolytes, including calcium and magnesium, is necessary. Lavage may be helpful, especially if calcium salts are used.

Disc batteries have the potential to leak alkali and cause local, generally esophageal, burns. This is typically seen in children and will require endoscopic management and radiographic tracking of location. Early removal is strongly recommended. If the battery has passed the pylorus, watchful waiting, and inspection of stool for passage is appropriate.


The prognosis depends on the type of chemical and extent of the injury. Most small lesions heal well, but larger wounds often do not heal and can develop into scars. Hydrofluoric acid burns have typically been associated with loss of digits.

Chemical injuries to the eye are the most serious, resulting in severe scarring and permanent loss of vision. 


The most common complications are pain and scarring.

Vision loss occurs when the eye is injured.

Most patients require multiple doctor visits, and many patients require skin grafts to alleviate the scars.

Postoperative and Rehabilitation Care

Except for first degree burns, all other burns require some type of followup. Skin burns need to be evaluated every 2-4 days until there are signs of healing. Patients with eye burns need to be seen in 24 hours.

For those who suffer a burn to the esophagus, endoscopy has to be repeated in 14-21 days to ensure that there is no stricture formation.


Besides a general surgeon or a burn specialist, other consultants involved in the care of these patients include an ophthalmologist, ENT surgeon, Gastroenterologist and a pediatrician.

Deterrence and Patient Education

To avoid chemical injury in children, parents should keep all dangerous chemicals out of reach of the children.

Individuals who have attempted suicide with chemicals need a psychiatric referral.

Pearls and Other Issues

Chemical burns have the potential to impair short and long-term health and, especially when the eye or esophagus are involved, severely alter the individual's well-being. The clinician must be vigilant to monitor even minor appearing burns, especially with HF acid, as what initially appears to be minor may have serious side effects.

Enhancing Healthcare Team Outcomes

Because burns can occur on almost any part of the body, specific guidelines in the management of each organ system are lacking. However, there is expert evidence on managing the patient as a whole. However, there still remain several gaps in the early management of chemical burns. What solution to rinse the skin or the eye and when to debride are two issues that continue to be debated. But there is no debate that the eye should be rinsed thoroughly, and the patient must be seen by the ophthalmologist. Because burns can affect all organ systems an interprofessional approach with interaction is necessary to avoid the high morbidity of the disorder.

Since most burn patients are managed in a burn unit, the role of the nurse is vital. Often these professionals are the first to identify burn-related complications like infections, melena, difficulty swallowing, eschar formation and declining urine output. The pharmacist should be closely involved when burns are caused by medications like podophyllotoxin, formic acid or topical salicylic acid. Knowledge in managing topical burns, especially in children can help prevent disability. [12] [13] (level III)


The outcomes following a chemical burn depend on the chemical, extent of burn, comorbidity of the patient and time to intervention. Some chemicals are more harmful than others, but chemical burns to the eye are always serious. Because chemical burns can cause poor cosmesis and functional disability, a team approach to management is vital.[14][15] (Level V)

  • Image 7029 Not availableImage 7029 Not available
    Contributed by Prof. Bhupendra C.K. Patel MD, FRCS
Attributed To: Contributed by Prof. Bhupendra C.K. Patel MD, FRCS

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Chemical Burns - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following features is not true of chemical burns?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 22-year-old factory worker is brought in to the emergency department and states "The liquid I was working with splashed into my right eye. I have pain and I cannot open it." Nothing has been done to the patient until the arrival. What is the best course of action?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Chemical Burns - References


Oseni OG,Olamoyegun KD,Olaitan PB, Paediatric burn epidemiology as a basis for developing a burn prevention program. Annals of burns and fire disasters. 2017 Dec 31     [PubMed]
Vanzi V,Pitaro R, Skin Injuries and Chlorhexidine Gluconate-Based Antisepsis in Early Premature Infants: A Case Report and Review of the Literature. The Journal of perinatal     [PubMed]
Rochlin DH,Rajasingh CM,Karanas YL,Davis DJ, Full-Thickness Chemical Burn From Trifluoroacetic Acid: A Case Report and Review of the Literature. Annals of plastic surgery. 2018 Jul 27     [PubMed]
Stone Ii R,Natesan S,Kowalczewski CJ,Mangum LH,Clay NE,Clohessy RM,Carlsson AH,Tassin DH,Chan RK,Rizzo JA,Christy RJ, Advancements in Regenerative Strategies Through the Continuum of Burn Care. Frontiers in pharmacology. 2018     [PubMed]
Malisiewicz B,Meissner M,Kaufmann R,Valesky E, [Physical and chemical emergencies in dermatology]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete. 2018 May     [PubMed]
Otter J,D'Orazio JL, Toxicity, Blister Agents (Mustard, Vesicants, Hd, Hn1-3, H) null. 2018 Jan     [PubMed]
Schaefer TJ,Szymanski KD, Burns, Evaluation And Management null. 2018 Jan     [PubMed]
Friedstat J,Brown DA,Levi B, Chemical, Electrical, and Radiation Injuries. Clinics in plastic surgery. 2017 Jul     [PubMed]
Liu HF,Zhang F,Lineaweaver WC, History and Advancement of Burn Treatments. Annals of plastic surgery. 2017 Feb     [PubMed]
Baradaran-Rafii A,Eslani M,Haq Z,Shirzadeh E,Huvard MJ,Djalilian AR, Current and Upcoming Therapies for Ocular Surface Chemical Injuries. The ocular surface. 2017 Jan     [PubMed]
Huang YF,Wang LL, [How to improve the prevention and treatment of ocular chemical burns in China: important elements]. [Zhonghua yan ke za zhi] Chinese journal of ophthalmology. 2018 Jun 11     [PubMed]
Struck HG, [Chemical and Thermal Eye Burns]. Klinische Monatsblatter fur Augenheilkunde. 2016 Nov     [PubMed]
Ferreira AL,Ferreira JM,da Silva PM,Constancio DF, Genitalia burn: accident or violence? Concerns that transcend injury treatment. Revista paulista de pediatria : orgao oficial da Sociedade de Pediatria de Sao Paulo. 2014 Jun     [PubMed]
Lobeck I,Dupree P,Stoops M,de Alarcon A,Rutter M,von Allmen D, Interdisciplinary approach to esophageal replacement and major airway reconstruction. Journal of pediatric surgery. 2016 Jul     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Nurse-Corrections (CCN). The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Nurse-Corrections (CCN), it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Nurse-Corrections (CCN), you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Nurse-Corrections (CCN). When it is time for the Nurse-Corrections (CCN) board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Nurse-Corrections (CCN).