Genetics, Meiosis


Article Author:
Samantha Gottlieb


Article Editor:
David Tegay


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
4/20/2019 11:01:16 PM

Introduction

The body is made up of trillions of somatic cells with the capacity to divide into identical daughter cells facilitating organismal growth, repair, and response to the changing environment. This process is called “mitosis.” In the gametes, a different form of cell division occurs called “meiosis.” The outcome of meiosis is the creation of daughter cells, either sperm or egg cells, through reduction division which results in a haploid complement of chromosomes so that on joining with another sex cell at fertilization a new diploid chromosomal complement is restored in the fertilized egg.[1][2][3]

Genomic diversity and genetic variation is produced through the process of meiosis due to chromosomal recombination and independent assortment. Each daughter cell created is genetically half-identical to that of its parent cell yet distinctly different from its parent cell and other daughter cells.[4][5]

Cellular

The genome is encoded by the chemical sequence of DNA nucleotides within our cells. If stretched from end to end, the DNA in one cell would span about 3 meters. In order to fit into each cell, the DNA is condensed by proteins to create “chromatin,” a complex of DNA and proteins. Somatic human cells contain 23 paired chromosomes or 46 total chromosomes. 46 is considered the “diploid” number (2n), while 23 is considered the “haploid” number (1n), or half the diploid number.[6][7]

Function

Meiosis is important for creating genomic diversity in a species. It accomplishes this primarily through 2 processes: independent assortment and crossing over (recombination).

  1. The law of independent assortment states that the random orientation of homologous chromosome pairs during metaphase I allow for the production of gametes with many different assortments of homologous chromosomes. For example, tetrads containing chromosomes 1A/1B and 2A/2B can create 2 different variations in daughter cells: 1A2A, 1A2B, 1B2A, or 1B2B. With 46 cells in the human body, about 8 million different variations can be produced.
  2. Crossing over refers to a phenomenon that takes place during prophase I. When homologous chromosomes come together to form tetrads, the arms of the chromatids can swap at random, creating many more possibilities for genetic variation of the gametes.

Mechanism

There are 2 parts to the cell cycle: interphase and mitosis/meiosis. Interphase can be further subdivided into Growth 1 (G1), Synthesis (S), and Growth 2 (G2). During the G phases, the cell grows by producing various proteins, and during the S phase, the DNA is replicated so that each chromosome contains two identical sister chromatids (c). Mitosis contains 4 phases: prophase, metaphase, anaphase, and telophase. 

Mitosis

  • Prophase: The nuclear envelope breaks down. The chromatin condenses into chromosomes.
  • Metaphase: The chromosomes line up along the metaphase plate. Microtubules originating from the centrosomes at the 2 opposite poles of the cell attach to the kinetochores of each chromosome.
  • Anaphase: Chromatids separate and are pulled by microtubules to opposite ends of the cell.
  • Telophase: The chromosomes gather at the poles of the cell, and the cell divides via cytokinesis forming 2 daughter cells. The nuclear envelope reappears, the spindle apparatus disappears and the chromosomes de-condense back into chromatin.

The cell can now enter Interphase where it grows and replicates its DNA in preparation for division, yet again.

Meiosis goes through all 5 phases of the cell cycle twice, with modified mechanisms that ultimately create haploid cells instead of diploid. In sperm cells, the male gametes, meiosis proceeds in the following manner:

Meiosis I

  • Prophase I: The nuclear envelope breaks down. The chromatin condenses into chromosomes. Homologous chromosomes containing the two chromatids come together to form tetrads, joining at their centromeres (2n 4c). This is when “crossing over” occurs, which creates genetic variation.
  • Metaphase I: The tetrads line up along the metaphase plate. Microtubules originating from the centrosomes at the 2 opposite poles of the cell attach to the kinetochores of each chromosome.
  • Anaphase I: Homologous chromosomes are separated by the microtubules to opposite poles of the cell.
  • Telophase I: The chromosomes gather at the poles of the cell, and the cell divides via cytokinesis forming 2 daughter cells (1n 2c). The nuclear envelope reappears, the spindle apparatus disappears and the chromosomes de-condense back into chromatin.

Interkinesis/Interphase II 

There is a brief pause between each round of meiosis providing time for the cell to replenish proteins; however, there is no S phase.

Meiosis II

  • Prophase II: In each of the daughter cells, a new spindle apparatus forms, the nuclear envelope breaks down, and the chromatin condenses into chromosomes again.
  • Metaphase II: The chromosomes line up along the metaphase plate. Microtubules originating from the centrosomes at the 2 opposite poles of the cell attach to the kinetochores of each chromosome.
  • Anaphase II: Sister chromatids separate and are pulled by the microtubules to opposite poles of the cell.
  • Telophase II: The chromosomes gather at the 2 poles of the cell and the cell divides via cytokinesis forming 2 daughter cells (1n 1c) from each of the two cells from meiosis I. The nuclear envelope reappears, the spindle apparatus disappears and the chromosomes de-condense back into chromatin.

In egg cells, the female gametes, meiosis follows the same general phases with only a slight variation. During telophase I, the cytoplasm divides unequally, creating a larger daughter cell and a smaller polar body. The polar body and the daughter cell both then enter meiosis II. In telophase II, the cytoplasm of the daughter cell again divides unequally and creates a daughter cell and another polar body. In addition, the polar body from meiosis I divides and forms 2 smaller polar bodies. After meiosis is completed, there is one daughter cell (1n, 1c) and 3 polar bodies (1n 1c). The polar bodies disintegrate as they do not have enough cytoplasm and proteins to survive as gametes.

Clinical Significance

Clinically, errors in meiosis can create many life-threatening outcomes. The most common error of meiosis is nondisjunction, when chromatids fail to separate during either anaphase I or II, creating imbalances in the number of chromosomes in each daughter cell. Most imbalances are incompatible with life, but some will result in viable offspring with a spectrum of developmental disorders. These medical conditions include Down syndrome, Patau syndrome, Edwards syndrome, Klinefelter syndrome, Turner syndrome, Triple X syndrome, and XYY syndrome.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Genetics, Meiosis - Questions

Take a quiz of the questions on this article.

Take Quiz
The process of germ cell maturation in the human male results in the production of which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A sperm cell is in metaphase II. How many chromosomes and chromatids are in the dividing cell?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the difference in meiosis between male and female gametes?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What happens in a cell during interkinesis/interphase II?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
At what point(s) in meiosis does the nuclear envelope disappear?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Genetics, Meiosis - References

References

Zelkowski M,Olson MA,Wang M,Pawlowski W, Diversity and Determinants of Meiotic Recombination Landscapes. Trends in genetics : TIG. 2019 Apr 1;     [PubMed]
Arbel-Eden A,Simchen G, Elevated Mutagenicity in Meiosis and Its Mechanism. BioEssays : news and reviews in molecular, cellular and developmental biology. 2019 Apr;     [PubMed]
Vijverberg K,Ozias-Akins P,Schranz ME, Identifying and Engineering Genes for Parthenogenesis in Plants. Frontiers in plant science. 2019;     [PubMed]
Gheldof A,Mackay DJG,Cheong Y,Verpoest W, Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. Journal of medical genetics. 2019 Feb 6;     [PubMed]
Al Aboud HG,Simpson B,Al Aboud NM, Genetics, DNA Packaging 2019 Jan;     [PubMed]
Ishiguro KI, The cohesin complex in mammalian meiosis. Genes to cells : devoted to molecular     [PubMed]
Crickard JB,Greene EC, Biochemical attributes of mitotic and meiotic presynaptic complexes. DNA repair. 2018 Nov;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Genetics. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Genetics, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Genetics, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Genetics. When it is time for the NP-Genetics board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Genetics.