Cancer, Retinoblastoma


Article Author:
Husnain Ishaq


Article Editor:
Bhupendra Patel


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
8/4/2019 9:24:34 AM

Introduction

Retinoblastoma is an uncommon type of malignancy occurring in 1 per 18000 childbirths,[1] but it is the most commonly encountered primary intraocular malignancy of childhood and accounts for 3% cases of all childhood cancers.[2] It is also the second most prevalent intraocular malignant tumor after uveal melanoma. In specialized care centers, survival rates are up to 95% with retention of vision in most cases, but it is lower in developing countries. Retinoblastoma is composed of retinoblasts (basophilic cells with hyperchromatic nuclei and scanty cytoplasm). Mostly retinoblastomas are undifferentiated, but different degrees of differentiation are present owing to the formation of structures known as rosettes. The tumor can be endophytic (in vitreous) and seeding of tumor cells throughout the eye, or it can be exophytic (in subretinal space), or it can demonstrate a mixed presentation. Optic nerve invasion can occur with the spread of tumor in subarachnoid space and into the brain. Metastatic spread occurs in regional lymph nodes, liver, lungs, bones, and brain.[3]

Etiology

Retinoblastoma occurs as a result of a mutation in the RB1 tumor suppressor gene located at the long arm of chromosome 13 at locus 14 (13q14).[4] Formation of tumor occurs when both the copies of the RB1 gene are mutated. In the case of bilateral retinoblastoma, there are 98% chances that the mutation is germline. Only 5% of cases of retinoblastoma have a family history. 95%  of retinoblastoma cases are sporadic, of which 60 % of patients have unilateral disease with no associated germline mutation. Remaining patients present with germline mutations along with the development of multiple tumors.

  • Heritable

In this type of retinoblastoma, there is a mutation in one of the alleles of the RB1 gene in all body cells. When the second allele has a mutation as a result of some mutagenic event, it leads to the malignant transformation of cells. Due to the presence of the mutation in all cells, a large number of these children develop bilateral and multifocal retinoblastoma. Heritable disease patients are at significant risk of nonocular cancers such as pineoblastoma, osteosarcoma, soft tissue sarcomas, and melanomas: these malignancies usually occur in a particular age group.[5] The chances of second malignancy are 6%, but the risk increases five-fold when external beam radiation has been used to treat the primary tumor.

  • Non-heritable

Non-heritable retinoblastomas are unilateral and are not transmitted. There is no risk of non-ocular cancers in these patients. In the case of unilateral retinoblastoma with no positive family history, it is non-heritable retinoblastoma, and the corresponding risk in each sibling and patient's offspring is 1%. Almost 90% of unilateral retinoblastomas cases are of the nonhereditary form.

Epidemiology

Retinoblastoma is the most commonly encountered primary intraocular tumor of childhood and accounts for 3% of all childhood tumors. It is also the second most common intraocular malignant tumor. The number of retinoblastoma cases ranges from 1 in 14000 to 1 in 20000 live births.[6] Three hundred new cases occur in the US per year. Retinoblastoma occurs equally in both sexes, and there is no sexual preference. Ninety percent of the cases present before the age of three years. Incidence of the disease is different in the various geographical regions.[7] Research shows six cases per million in Mexico and four cases per million in the US. India and Africa have the highest incidence.[2]

History and Physical

Presentation

Patients with retinoblastoma present mostly within the first year of age in the case of bilateral disease and within 3 years of age in case of unilateral disease. It is important to ask about family history of ocular malignancies. The most common presenting features are the following:

  • Leucocoria: (whitish pupillary reflex): It is the most common presenting feature and accounts for 60% of cases.
  • Strabismus: It is the second common presenting feature, and it is therefore important to perform fundus examination in all patients of childhood squint. 
  • Painful red eye: Painful red along with secondary glaucoma and associated buphthalmos can be present.
  • Inflammation: Orbital inflammation resembling pre-septal or orbital cellulitis can also be a presenting feature.
  • Visible extraocular growth
  • Decreased vision
  • Restriction of extraocular movements
  • Metastatic disease: Metastatic disease involving lymph nodes, liver, lungs, brain, and bones is rare before ocular involvement.

Signs

  • Intraretinal tumor: Intraretinal retinoblastoma is homogenous, dome-shaped whitish lesion along with calcification.
  • Endophytic tumor: The endophytic tumor is present in vitreous as whitish lesion and seeds in the gel.
  • Exophytic tumor: Presents as whitish subretinal mass, and it causes retinal detachment.
  • Hypopyon
  • Strabismus
  • Hyphema
  • Ocular inflammation
  • Iris heterochromia
  • Globe perforation
  • Proptosis
  • Cataract
  • Glaucoma
  • Anisocoria

Evaluation

  • Direct Ophthalmoscopy

Red reflex testing with a direct ophthalmoscope is the simplest test, and leukocoria is easily observable. This method serves as a simple screening test.[8]

  • Examination Under Anesthesia

Examination under anesthesia is necessary for measuring the corneal diameter, for tonometry, anterior chamber examination with a hand-held slit lamp, fundoscopy, cycloplegic refraction, and documenting all findings.

  • Ultrasound

To assess the size of the tumor, to observe calcifications, and it also helps to rule out similar conditions like coats disease.

  • Wide-Field Photography

Wide-field photography is used for analysis, documentation, and helps in the management of retinoblastoma.

  • CT SCAN 

CT scans help in the detection of calcifications, but due to radiation risks, it is avoided upon making the primary diagnosis.

  • MRI 

MRI is useful in the evaluation of optic nerve, extraocular extension, pineoblastoma, and to exclude similar diseases.[9]

  • Systemic Assessment

This includes physical examination, MRI orbit and brain, bone scan, bone marrow aspiration, and lumbar puncture.

  • Genetic Studies

 Genetic studies of blood samples and tumor tissue from patient and relatives.[3][8]

Treatment / Management

Treatment of retinoblastoma involves a multidisciplinary approach involving an ophthalmologist,  pediatric oncologist, ocular pathologist, geneticist, allied health professional, and parents. Different treatment modalities employed in the treatment of retinoblastoma are;

CHEMOTHERAPY is the mainstay of treatment. It is also used in combination with local therapies. Intravenous carboplatin, etoposide, and vincristine are used in three to six cycles depending upon the grade of retinoblastoma. Single carboplatin or dual agent therapy can also be used and has shown favorable results in selective patients such as bridging therapy to avoid aggressive measures. Intravitreal melphalan is used in cases of vitreous seeding although it carries a small risk of extraocular dissemination. Chemoreduction is followed by cryotherapy or transpupillary thermal therapy to maximize tumor control. 

TTT (Transpupillary thermal therapy)is used mostly for focal consolidation after chemotherapy; however, it can be used as an isolated treatment. TTT has a direct effect but also augments the effects of chemotherapy.

CRYOTHERAPY: the triple freeze-thaw technique is an option for pre equatorial tumors without deeper invasion or vitreous seedings.

BRACHYTHERAPY is used for an anterior tumor when there is no vitreous seeding and in cases of resistance to chemotherapy.

EXTERNAL BEAM RADIOTHERAPY is avoided when possible, especially in the case of heritable retinoblastoma because it can result in a second malignancy. Retinoblastomas are radiosensitive, but adverse effects include cataract, radiation neuropathy, radiation retinopathy, and hypoplasia of orbit.[10]

ENUCLEATION: enucleation is performed when there is infiltration of the anterior chamber, neovascular glaucoma, invasion of the optic nerve, and if the tumor comprises more than half of the vitreous volume. It is also useful when chemotherapy has failed and in cases of diffuse retinoblastoma due to poor visual prognosis and a high risk of recurrence. Minimal manipulation should take place when performing enucleation, and a portion of the optic nerve of about 10 mm requires excision.[11] Recent advances in enucleation techniques now allow the removal of a long segment of the optic nerve under direct vision.[12]

EXTRAOCULAR EXTENSION Adjuvant chemotherapy for 6 months is given following enucleation when there is retrolaminar or massive choroidal spread. When the extension of the tumor is up to the cut end of the optic nerve at enucleation, or it is through the sclera, then external beam radiation is used.

REVIEW careful follow-up at repeated intervals is required after treatment for early diagnosis of recurrence or development of new tumor, especially in patients with inherited disease.

Differential Diagnosis

The differential diagnosis of retinoblastoma includes diseases such as:

  • Persistent anterior fetal vasculature
  • Persistent posterior fetal vasculature
  • Coats disease
  • Retinopathy of prematurity
  • Toxocariasis
  • Uveitis
  • Vitreoretinal dysplasia
  • Coloboma of the choroid and optic disk
  • Posterior cataract

Prognosis

Patients with intraocular retinoblastoma, particularly those who have access to modern health care facilities, have an excellent prognosis and an overall survival rate of more than 95% in developed countries. The most critical risk factor associated with poor prognosis is extraocular extension either through the sclera or through the invasion of the optic nerve. Patients who survive bilateral retinoblastoma are at an increased risk of developing non-ocular malignancies later in life the latent period for the development of the second tumor is usually 9 months. External beam radiotherapy decreases the latent period and increases the risk of the second malignancy in the first 30 years of life. The most prevalent type of second malignancy is a sarcoma. The survival of patients who have developed sarcoma is less than 50%.

Complications

If retinoblastoma is left untreated patient is likely to develop the following complications:

  • Retinal detachment
  • Retinal necrosis
  • Orbital invasion
  • Optic nerve invasion 
  • Blindness 
  • Intracranial extension
  • Secondary neoplasms
  • Metastasis
  • Tumor recurrence
  • Temporal bone hypoplasia
  • Cataract
  • Radiation neuropathy 
  • Radiation retinopathy

Enhancing Healthcare Team Outcomes

Retinoblastoma management is complex and requires an interprofessional team approach that includes an ophthalmologist, pediatric oncologist, ocular pathologist, geneticist, allied health professionals, and parents. In almost every case, the patient first presents to the nurse practitioner or primary care provider. Since this is a rare disorder that needs urgent attention, the patient should immediately obtain a referral to an ophthalmologist.

The cornerstone of long term retinoblastoma management is strict adherence to the treatment plan, and a careful follow up at repeated intervals is required after treatment for early diagnosis of recurrence or development of new tumor especially in patients with inherited disease.

Patients require education about the type of treatment, including chemotherapy, surgery, and radiation. The primary care providers should be familiar with the postoperative follow up of these patients and when to refer the patient back to the ophthalmologist.

Since chemotherapy is the mainstay of treatment, the involvement of a pharmacist with experience in oncologic treatment is essential. The pharmacist can verify agent selection, dosing, and perform medication reconciliation, reporting any concerns back to the healthcare team. Since nursing is most likely to be in charge of administering the chemo, a close rapport and open communication between pharmacy and nursing staff are crucial.

All patient management is best in consultation with an experienced ophthalmologist who will be able to provide appropriate support. For patients who adhere and to treatment plan and proper follow up, the prognosis is good.

Retinoblastoma is a challenging diagnosis to manage, and as such, requires an interprofessional team approach, including physicians, specialists, specialty-trained nurses, and pharmacists, all collaborating across disciplines to achieve optimal patient results. [Level V]


  • Image 4622 Not availableImage 4622 Not available
    Contributed by Wikimedia Commons (Public Domain)
Attributed To: Contributed by Wikimedia Commons (Public Domain)

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Cancer, Retinoblastoma - Questions

Take a quiz of the questions on this article.

Take Quiz
It is noted that a 3-month-old does not have a red reflex on his right eye. Fundoscopic exam shows this does not involve the optic nerve. What chromosome most likely has an abnormality?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An 8-month- old child, presented with asymmetric red reflex and squint. Family history is positive for the intraocular malignancies. What is the most common intraocular malignant tumor in the children?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 2-month-old is observed not to have a red reflex in his left eye. Fundoscopic exam shows this does not involve the optic nerve or the tract. What chromosome most likely is expressing an abnormality?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An 8-month-old child born in Mexico is brought into the ophthalmology department for an initial visit. On examination, the child has a whitish pupillary reflex and iris heterochromia. The patient's father had an eye removed as a child. What is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 1-year-old child presents in the clinic with complaints of bilateral tender red eyes and orbital inflammation. On examination, there is preseptal cellulitis. The red reflex is absent, and hyphema is present. Genetic studies have shown that both alleles of the RB1 gene are mutated. Which of the following treatment modalities should be avoided in such patients?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 2-year-old child, born in Central America, presents with complaints of bilateral extraocular growth and orbital swelling. On examination, the red reflex is absent. Family history for intraocular malignancies is positive. The patient was treated with external beam radiotherapy. Which of the following complications is most likely to occur in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 3-year-old child is found to have an asymmetric red reflex and esotropia during a well-child exam. Fundoscopy shows whitish satellite lesions. There is a history of removal of father's eye since childhood. The patient was treated with external beam radiotherapy. Which of the following complications will most likely occur in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 2-year-old child born in central Africa presents with leukocoria. Fundoscopy shows a diffuse whitish subretinal mass causing retinal detachment and whitish lessons in the vitreous. The optic nerve is also involved. Which of the following is the most appropriate treatment modality for this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Cancer, Retinoblastoma - References

References

Mattosinho CCS,Moura ATMS,Oigman G,Ferman SE,Grigorovski N, Time to diagnosis of retinoblastoma in Latin America: A systematic review. Pediatric hematology and oncology. 2019 Apr 24;     [PubMed]
Alkatan HM,Al Marek F,Elkhamary S, Demographics of Pediatric Orbital Lesions: A Tertiary Eye Center Experience in Saudi Arabia. Journal of epidemiology and global health. 2019 Mar;     [PubMed]
Kletke SN,Feng ZX,Hazrati LN,Gallie BL,Soliman SE, Clinical predictors at diagnosis of low risk histopathology in unilateral advanced retinoblastoma. Ophthalmology. 2019 Apr 12;     [PubMed]
Zahn J,Chan MP,Wang G,Patel RM,Andea AA,Bresler SC,Harms PW, Altered RB, p16, or p53 expression is specific for porocarcinoma relative to poroma. Journal of cutaneous pathology. 2019 Apr 22;     [PubMed]
House RJ,Hsu ST,Thomas AS,Finn AP,Toth CA,Materin MA,Vajzovic L, Vascular Findings in a Small Retinoblastoma Tumor Using OCT Angiography. Ophthalmology. Retina. 2019 Feb;     [PubMed]
Darwich R,Ghazawi FM,Rahme E,Alghazawi N,Burnier JV,Sasseville D,Burnier MN,Litvinov IV, Retinoblastoma Incidence Trends in Canada: A National Comprehensive Population-Based Study. Journal of pediatric ophthalmology and strabismus. 2019 Mar 19;     [PubMed]
Liu Z,Yang Q,Cai N,Jin L,Zhang T,Chen X, Enigmatic gender difference in cancer incidence: evidences from childhood cancers. American journal of epidemiology. 2019 Mar 5;     [PubMed]
Shafiq A, Seeing red in young children: the importance of the red reflex. The British journal of general practice : the journal of the Royal College of General Practitioners. 2015 Apr;     [PubMed]
Jenkinson H, Retinoblastoma: diagnosis and management--the UK perspective. Archives of disease in childhood. 2015 Nov;     [PubMed]
Elaraoud I,Ch'ng S,Karl D,Kalogeropoulos D,Chavan R,Sharma A, Management of retinal detachment in retinoblastoma with globe conserving treatment. Journal of current ophthalmology. 2019 Mar;     [PubMed]
Schefler AC,Kim RS, Recent advancements in the management of retinoblastoma and uveal melanoma. F1000Research. 2018;     [PubMed]
Pelton RW,Patel BC, Superomedial lid crease approach to the medial intraconal space: a new technique for access to the optic nerve and central space. Ophthalmic plastic and reconstructive surgery. 2001 Jul     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Genetics. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Genetics, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Genetics, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Genetics. When it is time for the NP-Genetics board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Genetics.