Familial Hypocalciuric Hypercalcemia (FHH)


Article Author:
Muhammad Afzal


Article Editor:
Pranay Kathuria


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
3/16/2019 1:10:16 PM

Introduction

Familial hypocalciuric hypercalcemia (FHH) is a rare autosomal dominant condition. It occurs as a result of mutations in the calcium-sensing receptor gene (CASR) causing decreased receptor activity. Patients have mild hypercalcemia, hypocalciuria, hypermagnesemia, hypophosphatemia. Parathyroid hormone is normal or mildly elevated[1].

Etiology

The CaSR helps mantain a physiological level of ionized calcium in the blood. 

FHH is usually a benign condition in patients who have the heterozygous mutation. In most of the cases, familial hypocalciuric hypercalcemia (FHH1) results from loss-of-function mutations in the calcium-sensing receptor (CaSR) gene on the long arm of chromosome 3 (over 85%)[2][3]. The patient presents with the milder disorder and incidentally has a mild elevation in calcium and normal or mildly elevated PTH. The patients with a homozygous mutation can have severe hypercalcemia with marked hyperparathyroidism, fractures, and failure to thrive. Other rare cases of familial hypocalciuric hypercalcemia, FHH2 and FHH3 are linked to a mutation on chromosome 19[4][5]. FHH linked to chromosome 19q13 is called the Oklahoma variant[5]. FHH can rarely be caused by autoantibodies directed against the calcium-sensing receptor leading to decreased calcium-sensing receptor (CaSR) activity[6]. This type of FHH should be considered in case of the strong family history of autoimmune disorders. 

Epidemiology

FHH is a rare condition inherited in an autosomal dominant pattern equally distrib­uted between the sexes. Its true prevalence is not known. It has been estimated to be in the range of 1 in 78 000 compared with that of primary hyperparathyroidism of 1 in 1000, but the true prevalence is likely to be higher, due to its subclinical nature in many cases[1].

Pathophysiology

CaSR-expressing, homeostatic tissues include the parathyroid  glands, thyroidal C cells, intestines, bone, and kidney [7]. In the parathyroid glands, the CaSR effects the release and synthesis of parathyroid hormone (PTH) and the proliferation of the Chief cells in the parathyroid gland. Studies have shown expres­sion of the CaSR in all segments of the nephron, with the greatest expression in the cortical thick ascending limb of Henle's loop.The CaSR effects reabsorbtion of calcium in the kidney.  When there is a decrease in ionized calcium, there is secretion of PTH from the parathyroid and increased tubular reabsorbtion of calcium.  Hypercalcemia suppresses PTH release and also increases urinary excretion of calcium, sodium chloride (NaCl), and magnesium independent of PTH and calcitonin levels[8]

The loss of function mutations in the (CaSR) gene in parathyroid gland increases the set point for calcium sensing. It makes the parathyroid glands less sensitive to calcium, and a higher than normal serum calcium level is required to reduce PTH release. In the kidney, this defect leads to an increase in tubular calcium and magnesium reabsorption resulting in hypercalcemia, hypocalciuria, and frequently high normal levels of serum magnesium[1][9][10][11].

History and Physical

FHH patients are usually asymptomatic or have few symptoms associated with hypercalcemia, proba­bly due to its very mild nature. The usual symptoms are fatigue, weakness, constipation, polyuria, polydipsia, renal insufficiency, or a headache. Other symptoms include chondrocalcinosis or mental problems. Occasionally, patients have pancreatitis. An abnormally functioning CaSR might cause intra­ductal calcification and increased risk of pancreatitis. There is no increased incidence of fractures in FHH. FHH does not protect against the age-related bone loss.[1]

Evaluation

The diagnosis of FHH can be easy to make in an asymptomatic hypercalcemic patient with a family his­tory of hypercalcemia, a personal or family history of failed neck exploration, or normal serum PTH[1][2]. More than 99% of the filtered calcium gets reabsorbed despite the presence of hypercalcemia. The 24 hours urinary calcium excretion is less than 100 mg/24 hours. The Ca/Cr excretion ratio is very low. It is calculated as follows: [UCa × SCr] / [SCa × UCr], where UCa is the urinary calcium con­centration, SCr is the serum creatinine, SCa is the serum calcium concentration, and UCr is the urinary creati­nine concentration, all in mg/dl. The Ca/Cr clearance ratio is less than 0.01 in 80% of cases. All patients with calcium/creatinine clearance ratio of 0.020 or less should be tested for mutations in the CaSR gene. Serum Magnesium is in the upper-normal range or mildly elevated; whereas, serum magnesium tends to be nor­mal or low in primary hyperparathyroidism.

The differentiation between FHH and primary hyperparathyroidism is more difficult in the absence of a family history of hypercalcemia if PTH levels are normal and if the Ca/Cr clearance ratio is greater than 0.01 and less than 0.02. The age at diagnosis of hypercalcemia and family history are important. Detection of asymp­tomatic hypercalcemia before the age of 40 years or so favors the diagnosis of FHH. Obtaining serum calcium values from first-degree relatives in the absence of a family history can be helpful.

Other causes of PTH-dependent hypocalciuric hypercalcemia should be ruled out, for example, vitamin D deficiency, very low calcium intake, mild renal insufficiency, and treatment with thiazide diuretics or lithium. Correction of any of these abnormalities will lead to hypercalciuria if the patient has PHPT. Serum levels of fibroblast growth factor 23 (FGF-23) may be elevated in patients with PHPT.

Calcium infusion has also been used to distinguish renal calcium handling in FHH from that in primary hyperparathyroidism (PHPT). In PHPT, a rising filtered load of cal­cium increases urinary calcium excretion, whereas this response is absent in FHH[12].

Treatment / Management

FHH is usually a benign disorder and patients with FHH, for the most part, do not develop complica­tions from their disorder. The calcium/PTH levels are usually stable over the years. Subtotal parathyroidectomy does not cure the disorder. Educating and reassuring the patient and affected family members about the benign nature of this condition is very important. This communication avoids unnecessary and expensive monitoring and unneces­sary parathyroid exploration in the patient and relatives. Rarely, in a patient with atypical features, such as pancreatitis, total parathyroidec­tomy may be indicated to reduce the risk of further attacks of pancreatitis. The CaSR rep­resents a potentially important therapeutic target for disorders in which the receptor is hypoactive, such as FHH. Calcimimetics and calcilytics (CaSR antagonists) can play a pharmacological role in improving defective calcium sensing in inherited or acquired disorders of the CaSR[13].

Pearls and Other Issues

It is important to distinguish asymptomatic primary hyperparathyroidism from FHH because FHH is a benign inherited condition that typically does not require parathyroidectomy, nor will it be routinely cured by it. Although it is not difficult to differentiate patients with typical biochemical findings of either FHH or primary hyperparathyroidism, it can be challenging to differentiate patients with atypical presentations of either disease and in the absence of family history. Family screening and education are mandatory to avoid unnecessary surgery in the hypercalcemic family members.

Enhancing Healthcare Team Outcomes

Patients with hypercalcemia are often encountered by the nurse practitioner, primary care provider, endocrinologist and the internist. Sometimes these patients present with a family history and hence FHH should be suspected. In general, FHH is a benign disorder, is not progressive, and rarely associated with complications. The calcium/PTH levels are usually stable over the years. The key is to educate the patient that surgery is not necessary or required.This communication avoids unnecessary and expensive monitoring and unneces­sary parathyroid exploration in the patient and relatives. Rarely, in a patient with atypical features, such as pancreatitis, total parathyroidec­tomy may be indicated to reduce the risk of further attacks of pancreatitis. The CaSR rep­resents a potentially important therapeutic target for disorders in which the receptor is hypoactive, such as FHH. Calcimimetics and calcilytics (CaSR antagonists) can play a pharmacological role in improving defective calcium sensing in inherited or acquired disorders of the CaSR[13].

The outcomes in most patients with FHH are good to excellent. [14](Level V)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Familial Hypocalciuric Hypercalcemia (FHH) - Questions

Take a quiz of the questions on this article.

Take Quiz
Select the true statement about familial hypocalciuric hypercalcemia (FHH).



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 37-year-old man is referred for evaluation of hypercalcemia. He reports occasional back pain otherwise asymptomatic. He has past medical history of hypertension and gastroesophageal reflux disease. He takes pantoprazole and lisinopril. Labs show calcium 10.9 mg/dL (8.6-10.3), albumin 4.1 mg/dL, parathyroid hormone (PTH) 77 pg/mL (15-65), and creatinine 0.9 mg/dL (0.8-1.1). Two years ago his brother was diagnosed with hyperparathyroidism. His brother had parathyroid surgery with removal of three parathyroid glands but still has hypercalcemia. Which one of the following should be done next?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 16-year-old female presents to the clinic after being referred for elevated calcium levels. At a recent hospital visit for abdominal pain, her calcium was found to be 11.4 mg/dL. She has no active complaints at the moment. Urinary excretion of calcium is found to be <100mg/day. PTH level has been found to be normal. Which of the following, if developed eventually, would be an indication for parathyroidectomy in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Primary hyperparathyroidism and familial hypocalciuric hypercalcemia are both causes of hypercalcemia. Which of the following can differentiate these two diseases?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Familial Hypocalciuric Hypercalcemia (FHH) - References

References

[Disorders Caused by Mutations in Calcium-Sensing Receptor and Related Diseases.], Michigami T,, Clinical calcium, 2017     [PubMed]
The Biochemical Profile of Familial Hypocalciuric Hypercalcemia and Primary Hyperparathyroidism during Pregnancy and Lactation: Two Case Reports and Review of the Literature., Ghaznavi SA,Saad NM,Donovan LE,, Case reports in endocrinology, 2016     [PubMed]
Lee JY,Shoback DM, Familial hypocalciuric hypercalcemia and related disorders. Best practice     [PubMed]
Szalat A,Shpitzen S,Tsur A,Zalmon Koren I,Shilo S,Tripto-Shkolnik L,Durst R,Leitersdorf E,Meiner V, Stepwise CaSR, AP2S1, and GNA11 sequencing in patients with suspected familial hypocalciuric hypercalcemia. Endocrine. 2017 Mar;     [PubMed]
Law WM Jr,Heath H 3rd, Familial benign hypercalcemia (hypocalciuric hypercalcemia). Clinical and pathogenetic studies in 21 families. Annals of internal medicine. 1985 Apr     [PubMed]
Pearce SH,Trump D,Wooding C,Besser GM,Chew SL,Grant DB,Heath DA,Hughes IA,Paterson CR,Whyte MP, Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. The Journal of clinical investigation. 1995 Dec     [PubMed]
Heath H 3rd,Jackson CE,Otterud B,Leppert MF, Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. American journal of human genetics. 1993 Jul     [PubMed]
Lloyd SE,Pannett AA,Dixon PH,Whyte MP,Thakker RV, Localization of familial benign hypercalcemia, Oklahoma variant (FBHOk), to chromosome 19q13. American journal of human genetics. 1999 Jan     [PubMed]
Pallais JC,Kemp EH,Bergwitz C,Kantham L,Slovik DM,Weetman AP,Brown EM, Autoimmune hypocalciuric hypercalcemia unresponsive to glucocorticoid therapy in a patient with blocking autoantibodies against the calcium-sensing receptor. The Journal of clinical endocrinology and metabolism. 2011 Mar     [PubMed]
Tfelt-Hansen J,Brown EM, The calcium-sensing receptor in normal physiology and pathophysiology: a review. Critical reviews in clinical laboratory sciences. 2005     [PubMed]
Riccardi D,Brown EM, Physiology and pathophysiology of the calcium-sensing receptor in the kidney. American journal of physiology. Renal physiology. 2010 Mar     [PubMed]
Brown EM, Clinical lessons from the calcium-sensing receptor. Nature clinical practice. Endocrinology & metabolism. 2007 Feb     [PubMed]
Egbuna OI,Brown EM, Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best practice & research. Clinical rheumatology. 2008 Mar     [PubMed]
Marx SJ,Simonds WF,Agarwal SK,Burns AL,Weinstein LS,Cochran C,Skarulis MC,Spiegel AM,Libutti SK,Alexander HR Jr,Chen CC,Chang R,Chandrasekharappa SC,Collins FS, Hyperparathyroidism in hereditary syndromes: special expressions and special managements. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2002 Nov;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Genetics. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Genetics, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Genetics, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Genetics. When it is time for the NP-Genetics board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Genetics.