Physiology, Factor V


Article Author:
Winnie Lam


Article Editor:
Leila Moosavi


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
6/30/2019 7:32:59 AM

Introduction

Factor V is a glycoprotein that contributes to both procoagulant and anticoagulant function. This function is determined by which enzymes are present that can modify factor V. Factor V gets modified by activated factor X, thrombin, and activated protein C (aPC). Factor V plays a part in the common pathway of the coagulation cascade. In the coagulation cascade, factor V forms a prothrombinase complex with factor X. This prothrombinase complex aids in developing a fibrin and platelet clot and helps to stop bleeding.[1][2] The coagulation cascade consists of an intrinsic, extrinsic, and common pathway. The cascade involves the activation of clotting factors through the action of serine proteases. Some of these factors will bind to form complexes that can then act as proteases, usually, a serine protease which activates more clotting factors downstream.[1] Inactive clotting factors are always present at some level in the plasma, and contribute to the coagulation cascade when they are activated. The coagulation cascade ultimately concludes in the production of a fibrin clot, which aids in hemostasis to prevent continuing bleeding.[1] The coagulation cascade contributes to hemostasis, the normal functioning of the body to produce a clot in response to injury. Imbalance of the coagulation cascade or loss of regulation can lead to hemorrhage or thrombosis. Thrombosis is a pathological situation where a clot forms where it is not needed and can instead block blood flow and cause ischemia.[1]

Cellular

Factor V is a 330kDa glycoprotein. The F5 gene is on chromosome 1q23.[2][3] Factor V is produced primarily in the liver by megakaryocytes and hepatocytes. Megakaryocytes produce platelet-derived factor V along with platelets when activated during coagulation. Hepatocytes produce plasma-derived factor V. Platelet-derived factor V contributes to a local increase of factor V at sites of injury. [3][4] The structure of activated factor V via X-ray crystallography shows a beta-barrel, and three protruding loops thought to contribute to its ability to bind negatively charged phospholipid membranes.[5] The prothrombinase complex binds to these membranes, characteristic of red blood cells. Activated factor X cleaves factor V to activated factor V, the resulting glycoprotein is held together by hydrophobic forces and a calcium ion. The structure of factor V has homologous regions to factor VIII.[5] 

Mechanism

Factor V is converted to activated factor V by activated factor X and thrombin. Activated factor X and thrombin have proteolytic activity on factor V and removes a domain from factor V, converting it to activated factor V. Activated factor X is another factor upstream from factor V in the coagulation cascade. Thrombin is a downstream product of activated factor V and activated factor X activity and acts in a positive feedback manner to further increase the production of itself. Activated factor V is a cofactor for factor X, and together, these two factors bind to form a prothrombinase complex that cleaves prothrombin to thrombin.[1] There is evidence that the creation of thrombin decreases significantly in the absence of activated factor V.[2] This result supports the critical role of activated factor X in the coagulation cascade. Thrombin then cleaves fibrinogen to fibrin. Fibrin proteins and platelets bind to each other and form a fibrin clot. This fibrin clot helps to stop bleeding.

Activated factor V is cleaved and altered by aPC, which has proteolytic activity, cleaving activated factor V at Arg306, Arg506, and Arg 679,[2][6] which causes reduced affinity for activated factor X. The cleavage of Arg306, specifically, is required for complete inactivation of activated factor X.[2][6] This decreases the amount of activated factor V cofactor that binds to activated factor X, which results in decreased prothrombinase activity. Less thrombin gets produced, resulting in less fibrin produced. There is an overall decreased clot production as a result. This function of aPC shifts the balance towards the inhibitory regulation of coagulation.

APC will also modify Arg506 of factor V before it has been cleaved to activated factor V, which converts it to an anticoagulant protein, factor Vac. Factor Vac acts as a cofactor for aPC, along with protein S, to allow aPC to degrade activated factor VIII (Duga). Activated factor VIII is an activated factor in the coagulation cascade. The degradation of activated factor VIII causes a decrease in coagulation. Since aPC must undergo activation by factor Vac cofactor [5], a loss of factor Vac function or a reduction in factor Vac production will lead to decreased aPC function. This loss of aPC function has the name of aPC resistance. Increased aPC resistance or decreased aPC function will lead to higher coagulation and less anticoagulation. A mutation at Arg506 will affect both the production of deactivated activated factor V and factor Vac. However, aPC resistance is more affected by the inability to produce factor Vac.[5][7] Mutations in aPC itself, and Protein S can increase aPC resistance as well.[5][7] The function of aPC shifts the balance towards enhancement of anticoagulation.

Pathophysiology

Factor V Leiden results from a mutation in the factor V gene G1691A that causes a missense mutation, changing the arginine to glutamine at the site (Arg506Gln).[5] Factor V Leiden is associated with thromboembolic disease and increased aPC resistance.[7] This mutation slows the aPC modification of factor V to factor Vac, which decreases aPC anticoagulation activity, and tips the scale towards coagulation.[7]  Decreased aPC activity, or increased aPC resistance, leads to increased coagulation, which contributes to the thromboembolic phenotype of factor V Leiden. The site for activated factor V deactivation is also affected by this missense mutation. However, the thromboembolic phenotype is more a result of decreased concentrations of factor Vac, than it is increased concentrations of activated factor V.[7]  Studies have shown that individuals with factor V Leiden are more likely to develop deep vein thrombosis.[7] Individuals homozygous for factor V Leiden have an increased risk of developing thrombosis than heterozygous individuals. The heterozygous individual still has some functional factor V that can initiate aPC activity towards anticoagulation. Though factor V Leiden is associated with increased clotting, it is not as strongly correlated with pulmonary embolism, retinal vein thrombosis, and arterial thrombosis.[5][6] Factor V allele variants: factor V Arg306Thr and factor V Arg306Gly, have also been shown to have similar thromboembolic outcomes. These variants affect the site of proteolytic cleavage by aPC, the site that allows for the deactivation of activated factor V.[5][6]

Factor V deficiency, on the other hand, is a bleeding disorder accompanied by decreased levels of factor V protein. Decreased amounts of factor V protein are mainly caused by factor V inhibition via antibodies or an error in factor V protein production, secretion, and transport.[4] Inhibition to factor V, or antibodies targeting factor V for degradation, has been correlated with individuals who have received bovine thrombin, have rheumatologic diseases, or who have been treated with antibiotics.[3][4] The lectin mannose binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) proteins are involved in factor V and factor VIII packaging and transportation from the endoplasmic reticulum (ER) to the Golgi apparatus. LMAN1 is a transmembrane protein that aids in binding to the ER lumen. MCFD2 is a soluble protein that is a part of a transport complex between the ER and Golgi apparatus.[8] These mutations that affect the transport of these proteins will result in a combined factor V and factor VIII deficiency.[4]The most common site of bleeding, in individuals with factor V deficiency, is at the mucosa and skin.[3]

Clinical Significance

Factor V is a cofactor glycoprotein required in both the coagulation and anticoagulation pathways. The fate of factor V, whether it goes down the coagulation pathway or the anticoagulation pathway, depends on modification by either activated factor X or aPC. In modification by activated factor X or thrombin to activated factor V, and then binding activated factor X to produce the prothrombinase complex, it aids in coagulation to produce a fibrin clot. In modification by aPC to factor Vac and then binding aPC, it assists in the degradation of activated factor VIII to inhibit further coagulation. aPC resistance is affected by the functionality and presence of factor Vac. The most common point mutation leading to increased aPC resistance is a missense mutation resulting in Arg506Gln.[5] This mutation prevents aPC from converting factor V to factor Vac, which reduces aPC activity in the anticoagulation process, leading to aPC resistance. Factor V plays a dual role in the regulation of the coagulation cascade; defects in factor V can either cause thrombosis or increased bleeding. Normal functioning factor V contributes to appropriate homeostasis though overall homeostatic function relies on many different components in the coagulation cascade.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Factor V - Questions

Take a quiz of the questions on this article.

Take Quiz
A 65-year-old man, previously healthy, presents with a growing hematoma on his right arm after he accidentally struck it against a doorway a few hours ago. On examination, the healthcare practitioner notices some scattered bruising on his skin. A complete blood count panel is within the normal range. On the basis of this scenario, which of the following organs is most probably responsible for his condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A clinician is trying to determine what enhances factor V (FV) function. They add different substances to blood from FV knock out and FV wild type mice. Addition of which substance will most likely cause clotting in the blood samples from the FV wild type mice but not the FV knock out mice?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A healthy male is cutting vegetables with a knife when he slices his finger. This initiates a clotting cascade at the site of the wound. A complex forms in the common pathway of the clotting cascade. What does the complex formed by activated factor V and activated factor X produce through cleavage, that will help to stop the bleeding at his finger?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old male presents to the clinic to establish care. He is a non-smoker with a frequent history of venous thromboses and a family history of the same. What type of mutation does this individual most likely have?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A couple is currently expecting a child and is concerned the child will inherit a bleeding disorder. The mother is a known carrier of an X-linked bleeding disorder. If their child is a male, which of the following solutions would be most helpful for this individual?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Factor V - References

References

Smith SA,Travers RJ,Morrissey JH, How it all starts: Initiation of the clotting cascade. Critical reviews in biochemistry and molecular biology. 2015;     [PubMed]
Dahlbäck B, Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. International journal of laboratory hematology. 2016 May;     [PubMed]
Huang JN,Koerper MA, Factor V deficiency: a concise review. Haemophilia : the official journal of the World Federation of Hemophilia. 2008 Nov;     [PubMed]
Lippi G,Favaloro EJ,Montagnana M,Manzato F,Guidi GC,Franchini M, Inherited and acquired factor V deficiency. Blood coagulation     [PubMed]
Duga S,Asselta R,Tenchini ML, Coagulation factor V. The international journal of biochemistry     [PubMed]
Nicolaes GA,Dahlbäck B, Factor V and thrombotic disease: description of a janus-faced protein. Arteriosclerosis, thrombosis, and vascular biology. 2002 Apr 1;     [PubMed]
Van Cott EM,Khor B,Zehnder JL, Factor V Leiden. American journal of hematology. 2016 Jan;     [PubMed]
Zhu M,Zheng C,Wei W,Everett L,Ginsburg D,Zhang B, Analysis of MCFD2- and LMAN1-deficient mice demonstrates distinct functions in vivo. Blood advances. 2018 May 8;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Genetics. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Genetics, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Genetics, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Genetics. When it is time for the NP-Genetics board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Genetics.