Color Vision


Article Author:
Jeff Naifeh


Article Editor:
Evan Kaufman


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes


Updated:
6/18/2019 3:03:39 AM

Introduction

The surface of the human retina contains about 6 million cones and 100 million rods. Cones transmit color information; rods focus on greater sensitivity to low-light conditions. The fovea is the center of the retina and predominately concentrated with cones to accommodate high visual acuity in high light conditions. Photon-powered isomerization of rhodopsin, a complex consisting of vitamin-A derived retinal, and the protein opsin is the molecular mechanism of action for retina cells (photoreceptors).[1][2][3][2]

Issues of Concern

Within rhodopsin, light absorption leads to a chemical reaction that forces part of the rhodopsin molecule to translocate, by changing protein conformation and exposing active sites. This activated form of rhodopsin is known as metarhodopsin. MetarhodopsinII activates many copies of the G protein transducin (by replacing transducin's GDP with GTP). Activated transducin complexes and activates cyclic nucleotide phosphodiesterase (PDE), which can itself hydrolyze 1000 molecules of cGMP to 5'-GMP per second. cGMP-gated channels in the plasma membrane of these rods (or cones) allow sodium ion influx at high cGMP concentrations; this is balanced by cation exchanger-mediated glutamate efflux, maintaining cell depolarization (dark conditions). At low cGMP concentrations, these channels close, stopping sodium ion influx and reducing glutamate efflux, all leading to cell hyperpolarization (light conditions). Thus light-induced rod/cone state changes lead to hyperpolarization of the photoreceptor cells; which cease to transmit the neurotransmitter glutamate. Conversely, photoreceptor cells without the presence of light exist in the depolarized state and continuously release glutamate.

Light response is a one-to-one effect. The enzyme rhodopsin kinase quickly binds metarhodopsin II, phosphorylating and halting its activity. The protein arrestin binds phosphorylated metarhodopsin II. Innate GTPase activity in transducin eventually degrades bound GTP to GDP, leading to PDE dissociation and inactivation. MetarhodopsinII is unstable and will split within minutes, leading to opsin and free trans-retinal. Trans-retinal is transported to pigment epithelial cells that convert trans-retinal back to 11-cis-retinal, which eventually is recombined with opsin within cones/rods to reform rhodopsin. Guanylate cyclase restores cGMP concentration, and the cone/receptor is ready to respond to another light exposure event.

Additionally, phototransduction is subject to regulation by a calcium-mediated pathway to quickly diffuse a large gradient response, in such circumstances as sudden flashes of light in the dark. In dark conditions, intracellular calcium level is high due to calcium diffusion through cGMP-gated channels. Lack of frequent light response allows more calcium to enter the cell per second, due to high intracellular cGMP concentrations. Calcium ion binding to rhodopsin kinase increases the rate of rhodopsin phosphorylation, reducing transducin activation. Calcium ion binding to guanylate cyclase accelerates the restoration of cGMP concentration. And calcium ion binding to calmodulin increases cGMP affinity to its gated channel. 

Color vision results from the combination of signals from three visual pigment types within cones: that of red, green, and blue, which correspond to cone types L, M, and S (RGB-LMS). Those colors correspond to the wavelengths of peak light absorption intensities of the modified chromophores. L cones have peak absorptions at 555 nm to 565 nm, M cones at 530 nm to 537 nm, and S cones at 415 nm to 430 nm. Thus color vision arises from the shifted cones' peak absorption levels and ultimately the brain's interpretation of the composition of these points of wavelength absorption. The entire pathway is sometimes referred to as the retinoid cycle.[4][5][6][3]

Clinical Significance

Improper Color Vision Recognition/Color Blindness

Many forms of color vision recognition abnormalities are present in the population, with most having a genetic origin (congenital). Very few individuals are truly color blind, but instead, see a disrupted range of colors. The most common forms are protanopia and deuteranopia, conditions arising from loss of function of one of the cones, leading to dichromic vision. Protanopia is the loss of L cones (red) resulting in green-blue vision only. Deuteranopia is the loss of M cones (green) resulting in red-blue vision only. Both are X-linked alleles, therefore almost exclusively occurring in males, occurring with a prevalence of 1%. Loss of S cones does rarely occur in 0.01% of males and females. In these cases, one of the cones is not expressed, and physically in its place, one of the others is expressed.

Similar to above, but not as severe in its symptoms, is the condition anomalous trichromatic vision (tritanomaly), where all three cones are present but color vision is aberrant. The two common forms, protanomaly, and deuteranomaly, result in L or M cones, respectively, being replaced with a cone of intermediate spectral tuning. Both are X-linked and occur in 7% of males.[7]

Non-Color Vision Associated Diseases Affecting the Cones

In addition to disorders of proper color recognition, many diseases in vision display phototransduction defects affecting many portions of the signal pathway and its regulation. Here, not only is color vision function lessened but scotopic (low-light, rod-associated) vision as well.

Stationary Night Blindness (CSNB)

One such disease is congenital stationary night blindness. It is a genetic defect resulting in functional cones but dysfunctional rods. In this disease, many potential culprits have been identified including abnormal rhodopsin, arrestin, rod transducin, rod phosphodiesterase, and rhodopsin kinase. Studies have demonstrated that in some populations of this disease rods are stuck permanently outputting light signal. There are currently no treatments for this disorder. In CSNB, b-waves are reduced (in CSNB type 2) or absent (in CSNB type 1) during an electroretinogram (ERG).

Retinitis Pigmentosa (RP)

Another disease affecting rod function is retinitis pigmentosa, which is a progressive degeneration of the retina leading to blindness, of genetic origins. Frequently, it begins in early phase as night blindness and eventually progresses to loss of vision of mid-periphery leading to the center, manifesting as tunnel vision. These clinical manifestations are associated with faulty rod functioning; if cones begin to be affected then, blindness eventually results. RP is characterized by reduced or absent A-waves and b-waves during an ERG. It has a prevalence of 1 in 3500 individuals.

Malnutrition-Associated

Deficiency in the essential nutrient vitamin A leads to night blindness, and can eventually lead to permanent blindness through deterioration of the receptor outer segments.

Experimental Therapies

Currently, there are no FDA-approved treatments for CSNB or RP. However, there is the promise of gene-therapy interventions on the horizon. The recent completion of several phase I/II clinical trials of retinal gene therapies utilizing adeno-associated virus (AAV) have shown moderate success in preventing disease onset and progression for several years following treatment. At present, knowledge of specific abnormal phototransduction genes for a given disease is key to even minimal treatment.[3]

Enhancing Healthcare Team Outcomes

Color blindness is a group of eye disorders that affect the perception of color. The most common color vision deficiency is a red-green color vision. Affected individuals often have difficulty differentiating between shades of yellow, red and green. Blue-yellow color vision defects are rare. Color vision problems can also be due to medications, chemical exposure, and old age. Once diagnosed, there is no cure for inherited color deficiency but those related to medications, injury or illness can be improved. Thus, besides the ophthalmologist, the nurse and pharmacist must be aware of the causes of color vision defects and their causes. Any drug known to affect color vision should be discontinued. The patient should be referred to the ophthalmologist or optometrist for specially designed tinted eyeglasses or red-tinted contact lens. [8](level III)

Outcomes

Color vision deficiency may limit jobs in certain professions but the condition is not life-threatening. However, with the recent availability of tinted lens and glasses, most people can adapt. In the future, gene therapy may be available to restore vision in those with hereditary disorders of colored vision deficiency.[9][10] (Level III)[3]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Color Vision - Questions

Take a quiz of the questions on this article.

Take Quiz
What is predominant in xanthopsia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The frequency of color-blind males is 1 in 100 in a certain population. What is the frequency of color blind females given that the population is in Hardy-Weinberg equilibrium at this locus?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 33-year-old male presents complaining of problems with eyesight, which started a month ago and has progressively worsened. The patient reports deteriorating vision at night that last week for the first time prevented him driving. The patient is on vitamin-K for treatment of malabsorption. The patient is a body-builder and adheres to a regimented nutritional diet consisting of non-fortified basic carbohydrates, fats, and protein. Previously, the patient suffered from anemia requiring vitamin B12 injections. A Snellen chart test administered today is 20/20. Patient's family does not have a history of any congenital night blindness (CSNB). An electroretinogram (ERG) reveals reduced b-waves. What is the most likely cause of the patient's symptoms and what is the next step in treatment?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which is true of color vision?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What mechanism distinguishes cones from rods?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Color Vision - References

References

Vagell R,Vagell VJ,Jacobs RL,Gordon J,Baden AL, SMARTA: Automated testing apparatus for visual discrimination tasks. Behavior research methods. 2018 Sep 5     [PubMed]
O'Neal TB,Luther EE, Retinitis Pigmentosa null. 2018 Jan     [PubMed]
Musilová L,Pluhácek F,Marten-Ellis SM,Bedell HE,Siderov J, Contour interaction under photopic and scotopic conditions. Journal of vision. 2018 Jun 1     [PubMed]
Fain G,Sampath AP, Rod and cone interactions in the retina. F1000Research. 2018     [PubMed]
Hassall MM,Barnard AR,MacLaren RE, Gene Therapy for Color Blindness. The Yale journal of biology and medicine. 2017 Dec     [PubMed]
Marechal M,Delbarre M,Tesson J,Lacambre C,Lefebvre H,Froussart-Maille F, Color Vision Tests in Pilots' Medical Assessments. Aerospace medicine and human performance. 2018 Aug 1     [PubMed]
Celik N,Rohrschneider K, [Electronic vision aids : New options for rehabilitation of the visually impaired]. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2018 Jul     [PubMed]
Hirji N,Aboshiha J,Georgiou M,Bainbridge J,Michaelides M, Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic genetics. 2018 Apr     [PubMed]
Moore NA,Morral N,Ciulla TA,Bracha P, Gene therapy for inherited retinal and optic nerve degenerations. Expert opinion on biological therapy. 2018 Jan     [PubMed]
Reddix MD,Funke ME,Kinney MJ,Bradley JL,Irvin G,Rea EJ,Kunkle CK,McCann MB,Gomez J, Evaluation of Aircrew Low-Intensity Threat Laser Eye Protection. Military medicine. 2019 Mar 1;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Genetics. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Genetics, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Genetics, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Genetics. When it is time for the NP-Genetics board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Genetics.