Anatomy, Skin Sweat Glands


Article Author:
Bonnie Hodge


Article Editor:
Robert Brodell


Editors In Chief:
Linda Lindsay


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes


Updated:
4/5/2019 8:20:52 PM

Introduction

Sweat glands are appendages of the integument. There are eccrine and apocrine sweat glands. They differ in embryology, distribution, and function. Eccrine sweat glands are simple, coiled, tubular glands present throughout the body, most numerously on the soles of the feet. Thin skin covers most of the body and contains sweat glands, in addition to hair follicles, hair arrector muscles, and sebaceous glands. Exceptions are the vermillion border of the lips, external ear canal, nail beds, glans penis, clitoris, and labia minora, which do not contain sweat glands. The thick skin covering the palms of hands and soles of feet lack all skin appendages except sweat glands.

Apocrine sweat glands, also referred to as odoriferous sweat glands, are known for producing malodorous perspiration. They are large, branched glands that are mostly confined to the axillary and perineal regions, including the perianal region, labia majora in women, and the scrotum and prepuce in men. Apocrine sweat glands are also present in the nipples and areolar tissue surrounding the nipples.[1][2][3]

Structure and Function

Eccrine sweat glands serve a thermoregulatory function via evaporative heat loss. When the internal temperature of the body rises, sweat glands release water to the skin surface. There, it quickly evaporates, subsequently cooling the skin and blood beneath. This is the most effective means of thermoregulation in humans. Eccrine sweat glands also participate in ion and nitrogenous waste excretion. In response to emotional or thermal stimuli, sweat glands can produce at least 500 mL to 750 mL in a day.[4][5][6]

Apocrine sweat glands start to function at puberty under the stimulation of sex hormones. They are associated with hair follicles in the groin and axillary region. The viscous, protein-rich product is initially odorless but may develop an odor after exposure to bacteria. Modified apocrine sweat glands include the wax-producing ceruminous glands of the external auditory meatus, the Moll glands found at the free margins of the eyelids, and the mammary glands of the breast.

Sweat glands play a regenerative role in skin damage. In second-degree cutaneous burns, which extend into the reticular dermis, regeneration of the epithelium occurs via skin appendages including hair follicles, sebaceous glands, and sweat glands. The epithelial cells surrounding these appendages produce more epithelial cells that progress to form a new epithelium, a process that can take 1 to 3 weeks.

Embryology

Both eccrine and apocrine sweat glands originate from the epidermis. Eccrine glands begin as epithelial cellular buds that grow into the underlying mesenchyme. The glandular secretory components are then formed by elongation of the gland and coiling of the ends. Primordial sweat ducts are formed by epithelial attachments of the developing gland. Finally, the central cells degenerate to form the lumen of the sweat duct. Cells on the periphery of the gland differentiate into secretory and myoepithelial cells. Myoepithelial cells are thought to be specialized smooth muscle cells that function to expel sweat from the gland. Eccrine sweat glands first appear on the palms and soles during the fourth month of gestation; they become functional soon after birth.

On the other hand, apocrine sweat glands do not function until hormonal stimulation during puberty, and their ducts do not open onto the skin surface. This is because these glands originate from the stratum germinativum of the epidermis. Therefore, down-growth does not produce a duct open to the skin surface. Instead, the ducts open into hair follicles and sweat is released through the hair opening in the skin. The canals of these apocrine sweat gland ducts enter the hair follicle superficial to the sebaceous gland, which results in a protein-rich sweat rather than the watery sweat associated with eccrine sweat glands.

Blood Supply and Lymphatics

Sweat glands along with all other skin appendages receive blood supply from cutaneous perforators of underlying source vessels. The perforators may branch directly from the source as septocutaneous or fasciocutaneous perforators or from muscular branches as musculocutaneous perforators. Once these perforators reach the skin, they form extensive networks called dermal and subdermal plexuses. Interconnections between these plexuses form via connecting vessels that run perpendicular to the skin surface, forming a continuous vascular plexus in the skin.

Lymphatic drainage parallels the blood supply, starting with blind-ended lymphatic capillaries in the dermal papillae. These drain into dermal and deep dermal plexuses that eventually coalesce to form larger lymphatic vessels.

Nerves

Eccrine sweat glands receive sympathetic innervation via cholinergic fibers that send impulses in response to changes in core body temperature. Sympathetic innervation to the sweat glands is mediated by the thermoregulatory center of the hypothalamus. A short preganglionic cholinergic fiber is originating from the thoracolumbar region of the spinal cord synapses with the postganglionic neuron via nicotinic acetylcholine. The postganglionic fiber releases acetylcholine, which differs from all other sympathetic postganglionic fibers that release norepinephrine. Cholinergic stimulation of muscarinic receptors induces sweating. Apocrine sweat glands receive adrenergic sympathetic innervation. Because apocrine sweat glands respond to norepinephrine, they are involved in emotional sweating due to stress, fear, pain, and sexual stimulation.

Clinical Significance

Given the role of sweat glands in thermoregulation, both eccrine and apocrine glands are associated with various diseases ranging from mild and discomforting to life-threatening. Disorders of sweating can have emotional, social, and professional implications.[7][8][9]

Hyperhydrosis is the excessive excretion of sweat above the quantity needed for thermoregulation. It can be idiopathic or due to another endocrine, neurologic, or infectious disorders. Treatment options include topical medications, oral medications, surgical procedures, or botulinum toxin injection. Bromhidrosis is a similar disorder that presents with excessive malodorous perspiration. It can involve either apocrine or eccrine sweat glands; apocrine bromhidrosis tends to develop after puberty, while eccrine bromhidrosis may develop at any age. It is caused by excessive perspiration that secondarily becomes malodorous by bacterial breakdown. Because poor hygiene most often aggravates bromhidrosis, an effective treatment is improving personal hygiene. Surgical approaches, antibacterial agents, and antiperspirants are treatment options as well.

The sweat glands of patients with cystic fibrosis (CF) are ineffective at reabsorbing salt which has major implications. CF is an autosomal recessive congenital disease in which the cystic fibrosis transmembrane regulator (CFTR) that normally inhabits the apical membrane of epithelial cells is defective. CFTR is a transmembrane protein that functions as part of a cAMP-regulated chloride ion channel; in normal sweat glands, the ductal epithelium reabsorbs sodium and chloride ions in response to aldosterone so that sweat is hypotonic. In CF patients, the sweat glands fail to reabsorb chloride which affects sodium reabsorption resulting in salty sweat and an inability of sweat glands to participate in ion regulation. Disruption of the same membrane proteins in the respiratory and gastrointestinal epithelium result in accumulations of thick mucus.

Another autosomal recessive congenital disorder that affects sweat glands is lamellar ichthyosis. Infants present with persistent scaling skin and growth of hair may be curtailed. Impairment of sweat gland development often causes infants to suffer in severely hot weather as they cannot maintain thermoregulation through sweating.

Hidradenitis suppurativa is a chronic, inflammatory disease affecting the hair follicles. This ailment has classically been associated with the apocrine sweat glands as it manifests after puberty in the apocrine-gland concentrated areas of the body. However, the pathophysiology involves follicular occlusion rather than an apocrine disorder as previously thought. Patients often present with tender, suppurative subcutaneous nodules and abscesses in the axillae and groin. The lesions can form sinus tracts and extensive scarring.

Hypohydrotic ectodermal dysplasia is a disease characterized by hypotrichosis (decreased growth of scalp and body hair), hypodontia (congenital absence of teeth), and hypohidrosis. The term “hypohidrotic” indicates impairment in the ability to perspire. Patients born with hipohydrotic ectodermal dysplasia have difficulty regulating body temperature and therefore must learn to modify their environment in order to control exposure to heat.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Skin Sweat Glands - Questions

Take a quiz of the questions on this article.

Take Quiz
A 34-year-old man from Florida begins a 6-mile run in the summer. A few minutes into the run, he begins sweating. What nerve fibers are responsible for the stimulation of eccrine sweat glands in response to increased core body temperature?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 54-year-old female with longstanding type 2 diabetes mellitus presents to the emergency department complaining of nausea, vomiting, and extreme fatigue. She has a 2-day history of polydipsia and polyuria. Upon admitting her to the hospital, you are concerned about her hydration status as she has been vomiting and urinating excessively in addition to insensible water loss. In normal adults, the average daily loss of water through the lungs and skin (insensible water loss) is approximately which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Eccrine sweat glands are derived from which component of the integument?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
At puberty, hormonal stimulation causes activation and function of apocrine sweat glands. These glands secrete a protein-rich sweat as opposed to the watery sweat produced by eccrine glands. Where do the ducts of apocrine sweat glands open?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
At puberty, hormonal stimulation activates apocrine sweat glands that have been inactive since birth. Which of the following locations does not have apocrine sweat glands?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Skin Sweat Glands - References

References

Agarwal S,Krishnamurthy K, Histology, Skin 2019 Jan;     [PubMed]
Nawrocki S,Cha J, The Etiology, Diagnosis and Management of Hyperhidrosis: A Comprehensive Review. Part I. Etiology and Clinical Work-Up. Journal of the American Academy of Dermatology. 2019 Jan 30;     [PubMed]
Fulton EH,Kaley JR,Gardner JM, Skin Adnexal Tumors in Plain Language: A Practical Approach for the General Surgical Pathologist. Archives of pathology     [PubMed]
Grubbs H,Morrison M, Embryology, Hair 2019 Jan;     [PubMed]
Urso B,Lu KB,Khachemoune A, Axillary manifestations of dermatologic diseases: a focused review. Acta dermatovenerologica Alpina, Pannonica, et Adriatica. 2018 Dec;     [PubMed]
Kabashima K,Honda T,Ginhoux F,Egawa G, The immunological anatomy of the skin. Nature reviews. Immunology. 2019 Jan;     [PubMed]
Gagnon D,Crandall CG, Sweating as a heat loss thermoeffector. Handbook of clinical neurology. 2018;     [PubMed]
Murota H,Yamaga K,Ono E,Katayama I, Sweat in the pathogenesis of atopic dermatitis. Allergology international : official journal of the Japanese Society of Allergology. 2018 Oct;     [PubMed]
Benzecry V,Grancini A,Guanziroli E,Nazzaro G,Barbareschi M,Marzano AV,Muratori S,Veraldi S, Hidradenitis suppurativa/acne inversa: a prospective bacteriological study of 46 patients and review of the literature. Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia. 2018 Apr 19;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Advanced Physiology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Advanced Physiology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Advanced Physiology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Advanced Physiology. When it is time for the NP-Advanced Physiology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Advanced Physiology.