Physiology, Platelet


Article Author:
John Fountain


Article Editor:
Sarah Lappin


Editors In Chief:
Linda Lindsay


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
4/16/2019 11:03:19 PM

Introduction

Platelets are small blood cells with several physiological purposes; the best-studied is thrombosis activation. Through their clotting activity and activation of the coagulation cascade, they are crucial to maintaining adequate blood volume in those with vascular injury. The initiation of this activity begins with tissue injury and results in the release and binding of several glycoproteins, growth factors, and clotting factors. The complexity of these processes allows for many pharmacologic targets, which provides several options when it comes to antithrombotic therapy.[1][2][3]

Cellular

The outer membrane of platelets is critical for its function in hemostasis. Several receptors that are expressed on its surface either constitutively or after activation allows for adhesion to endothelial surfaces as well as aggregation with other platelets. Inside the platelet, alpha granules and dense granules are found, which contain specific compounds that are critical for a variety of functions. Alpha granules are more numerous, and contain compounds like P-selectin, GPIIb/IIIa, GPIb, von Willebrand factor (vWF), factors V, IX, and XIII, and others. Dense granules contain some of these compounds, but are principally responsible for storing calcium, potassium, serotonin, and important nucleotides such as ATP and ADP.[4][5][6]

Development

Platelets are formed by mature megakaryocytes. Megakaryocytes are large blood cells whose major function is the production of platelets. When a megakaryocyte becomes mature, pseudomembrane blebs are extended and eventually break off of the membrane, forming platelets. Platelets, once formed, have an average lifespan of 7-10 days, at which point they are removed from the bloodstream.

Function

Platelets maintain hemostasis by adhering to the vascular endothelium, aggregating with other platelets, and initiating the coagulation cascade, leading to the production of a fibrin mesh which effectively prevents significant blood loss. Platelets are also crucial in inflammation, tissue growth, and the immune response. These processes are mediated by the release of compounds from the alpha and dense granules, which include numerous growth factors as well as IgG and components of the complement system.

Mechanism

Platelets can be activated in response to exposed collagen, thrombin, ADP, or other compounds. In response to tissue injury, exposed collagen on the subendothelial surface can bind directly to either the platelet or to vWF. The vWF is a molecule that can bind to both collagen and the platelet, via the GPIb receptor on the platelet surface. As a result, vWF acts as a bridge, forming a complex of collagen, vWF, and platelet, which results in adhesion to the vascular surface. In addition, exposed collagen can bind directly to the platelet by binding to the GPVI receptor.

Binding to the GPIb and GPVI receptors causes activation of the platelet, beginning intracellular signaling cascades. These cascades result in the release of both alpha and dense granules, as well as activation of other enzymes, such as cyclooxygenase-1 (COX-1), which synthesizes thromboxane A2 (TXA). The release of alpha and dense granules is crucial for recruitment of nearby platelets and further activation of the platelet.

As a result of degranulation, ADP, TXA, serotonin, fibrinogen, and P-selectin are secreted into the plasma. ADP and TXA are especially important in the activation of platelets. Released ADP binds to P2Y and P2Y receptors on the platelet surface, further increasing signal transduction and activation in the platelet, while TXA binds to thromboxane prostanoid receptors, increasing activation of nearby platelets. Both of these are critical in the recruitment of other platelets to form a large platelet plug. Serotonin acts in a similar, but less potent, way on 5HT receptors.

During activation, GPIIb/IIIa receptors are activated on the platelet’s surface, entering a high-affinity state. GPIIb/IIIa receptors are responsible for binding to fibrinogen. Since two platelets may bind a molecule of fibrinogen, platelets begin cross-linking, forming a larger platelet plug. In addition, by activating the coagulation cascade with the release of clotting factors earlier during activation, the platelets cause an increased level of thrombin in the blood. Thrombin is a very potent platelet activator of platelets itself, but also results in the cleavage of fibrinogen to fibrin. This conversion causes the formation of a stronger link between platelets, converting the soluble fibrinogen into an insoluble fibrin mesh.

Related Testing

The monitoring of platelet quantity and function is frequently used to evaluate bleeding risk in hospitalized patients. In healthy patients, platelets are incredibly numerous, with a range of 150 to 350 x10/L. A drop in this number can indicate consumption of platelets by a condition such as disseminated intravascular coagulation, or autoimmune destruction of platelets, as in immune thrombocytopenia.[7][8]

The function of platelets can be monitored by evaluating the bleeding time, which evaluates the time between breaking the vasculature and formation of an effective platelet plug. This time may be elevated in conditions like uremia, in which platelet count is normal but function is impaired. 

Clinical Significance

Disorders of platelet function or quality are clinically significant conditions with dangerous ramifications. Immune thrombocytopenia represents a condition in which antibodies are formed against the GPIIb/IIIa receptor of the platelets, resulting in the destruction of platelets. As expected, the ability of the body to effectively clot in response to vascular damage is significantly reduced. Intrinsic deficiencies, such as GPIb receptor deficiency, as seen in Bernard-Soulier syndrome, acts to decrease the adhesion of platelets to the endothelial surface, leading to a similar result.

The complex cascade involved in platelet activation allows for inhibition at several steps in order to avoid or decrease the risk of thrombosis. The most well known of these inhibitors is aspirin, which acts as an irreversible inhibitor of COX, thus inhibiting the formation of TXA. As a result, platelets are unable to aggregate as effectively, thus decreasing the likelihood of clot formation or propagation.

More recently, P2Y receptor blockers and drugs that interfere with the fibrinogen-GPIIb/IIIa binding process have emerged as powerful tools in thrombosis prevention. P2Y receptor blockers, such as clopidogrel, act to decrease the risk of thrombosis by preventing ADP from binding to its receptors on platelet surfaces. These drugs are frequently used in combination with aspirin to reduce thrombosis further. Additionally, Abciximab, a monoclonal antibody to the GPIIb/IIIa receptor, and other GPIIb/IIIa receptor inhibitors (such as tirofiban) also function to decrease thrombosis by inhibiting platelet cross-linking directly.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Platelet - Questions

Take a quiz of the questions on this article.

Take Quiz
A single platelet is isolated and treated with aspirin. This prevents platelet aggregation for the lifetime of the platelet. Which of the following represents the duration of effect of aspirin on that platelet?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 54-year-old male presents to the emergency department with a chief complaint of chest pain. He appears diaphoretic and says that it feels like an elephant is sitting on his chest. An EKG is performed, which reveals an ST-elevation myocardial infarction secondary to obstriction in the left circumflex artery. To prevent propagation of thrombosis, the attending physician orders aspirin and clopidogrel for the patient. Which of the following represents the action of these two agents, respectively?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You are evaluating a patient with a history of ineffective clotting. You notice that the patient’s platelets adhere to the endothelial surface, but do not cross-link. Which of the following receptors is most likely deficient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You are part of a laboratory that is involved with platelet research, and decide to mark several platelets in the body with a radioactive marker. You decide to periodically check for radioactive platelets until they have all been destroyed. How long is the average lifespan of these marked platelets?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Blockade of which of the following two receptors would inhibit platelet adhesion to the vascular endothelium?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 3-year-old girl presents to the emergency department after a stray dog bit her right arm. She is in mild distress, and she is holding her right arm. On examination, she has a visible 2 cm laceration with dried blood. Which of the following events of the coagulation cascade occurred first after she was bitten?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Platelet - References

References

Eder AF,Dy BA,Wagner SJ, Apheresis technology and bacterial contamination of platelets. Transfusion. 2019 Apr;     [PubMed]
Ziegler M,Wang X,Peter K, Platelets in Cardiac Ischaemia/Reperfusion Injury - A Promising Therapeutic Target. Cardiovascular research. 2019 Mar 25;     [PubMed]
Sun RJ,Shan NN, Megakaryocytic dysfunction in immune thrombocytopenia is linked to autophagy. Cancer cell international. 2019;     [PubMed]
Guidetti GF,Torti M,Canobbio I, Focal Adhesion Kinases in Platelet Function and Thrombosis. Arteriosclerosis, thrombosis, and vascular biology. 2019 Mar 21;     [PubMed]
Kügelgen IV, Pharmacology of P2Y Receptors. Brain research bulletin. 2019 Mar 25;     [PubMed]
Reddoch-Cardenas KM,Bynum JA,Meledeo MA,Nair PM,Wu X,Darlington DN,Ramasubramanian AK,Cap AP, Cold-stored platelets: A product with function optimized for hemorrhage control. Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis. 2019 Feb;     [PubMed]
Tsai HM, Thrombotic Thrombocytopenic Purpura – beyond Empiricism and Plasma Exchange. The American journal of medicine. 2019 Mar 27;     [PubMed]
Kado R,McCune WJ, Treatment of primary and secondary immune thrombocytopenia. Current opinion in rheumatology. 2019 May;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Advanced Physiology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Advanced Physiology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Advanced Physiology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Advanced Physiology. When it is time for the NP-Advanced Physiology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Advanced Physiology.